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Abstract. As is well known, a positive Ricci curvature bound implies a diam-
eter bound for a complete manifold. When the Ricci curvature is replaced by

the scalar curvature, such a diameter bound is not possible. However, a bound

on the size of the manifold along a certain direction is possible if we also impose
a special topology. This is known as Gromov’s band width estimate. There

are various proofs of the band width estimate, and we focus the prescribed

mean curvature surface (or µ-bubble) approach to the band width estimate
of Gromov. The first lecture will introduce some basics of hypersurfaces in

a Riemannian manifold, in particular, first variation and second variation of
µ-bubbles, torical scalar curvature rigidity and foliation construction. The

key results of the first lecture were due to Schoen-Yau, Bray-Brendle-Neves,

Gromov and J. Zhu.
We introduce the weighted µ-bubble and apply the technique to study

band width estimate under a spectral condition. If time permits, we will also

discuss some Llarull type theorems, and spacetime settings of the band width
estimates.

1. Basics of hypersurfaces in Riemannian manifold

We assume familiarity with concepts in Riemannian manifold such as metrics,
Levi-Civita connections. See for example [dC92], [Pet98]. Now we review basics of
hypersurfaces in a Riemannian manifold.

1.1. Quick review of Riemannian geometry.
Let g be a Riemannian metric on the manifold M and ∇ be the related Levi-

Civita connection. We define the Riemann curvature R l
ijk ,

R l
ijk ∂l := ∇∂i∇∂j∂k −∇∂j∇∂i∂k, Rijkl = glqR

q
ijk .

The Ricci curvature is

Ricil = gjkRijkl.

The scalar curvature is

R = gil Ricil .

1.2. Hypersurface. Let Σ be a hypersurface in (M, g), and ν be a unit normal to
Σ, then the second fundamental form of Σ in M is given by

A(X,Y ) = −⟨∇XY, ν⟩.

Then the mean curvature is

H = −
n−1∑
i=1

⟨∇eiei, ν⟩,

1
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where {ei} is an orthonormal frame of the tangent space of Σ. We can choose an
orthonormal frame such that A(ei, ej) := Aij is diagonalized, the diagonal entry is
called principle curvatures.

1.3. First variation of area. Let Σ be a hypersurface in M , let Σt be a one-
parameter family of deformations of Σ given by ϕ(Σ, t) with ϕ(Σ, 0) = Σ. Let
{x1, . . . , xn} be a coordinate system around a point p ∈ Σ. We can consider
{x1, . . . , xn, t} to be a coordinate system of Σ× (−ε, ε) near the point (p, 0). Let

ei = dϕ( ∂
∂xi ), T = dϕ( ∂

∂t ).

The induced metric on Σ is given by

σij = ⟨ei, ej⟩.
We know that

∂tσij =T ⟨ei, ej⟩
=⟨∇T ei, ej⟩+ ⟨ei,∇T ej⟩
=⟨∇eiT, ej⟩+ ⟨ei,∇ejT ⟩.

The variation of the area element is given by

∂t
√
detσ = σij⟨∇eiT, ej⟩

√
detσ,

where σij is the inverse of σij . The vector T can be decomposed to two components
which are respectively tangent to Σt and normal to Σt. When T is normal to Σ,
we call Σt a normal variation. We see that

(1.1) ∂t
√
σ = divΣ T

⊤ + divΣ T
⊥ = divΣ T

⊤ + ⟨T, ν⟩H,
where divΣ = σij⟨∇ei(·), ej⟩.

1.4. Gauss equation. The Gauss equation

R̄ijkl = Rijkl − hjkhil + hikhjl.

Lemma 1.1 (Schoen-Yau rewrite).

(1.2) RicM (ν, ν) =
1

2
RM − 1

2
RΣ − 1

2
|A|2 + 1

2
H2.

Proof We calculate directly by using definitions and Gauss equation. We again
use an orthonormal frame. We have

RicM (ν, ν)

=
∑
i

Rmiννi

=
∑
i,j

Rmijji −
∑
j ̸=ν

Rmijji

=RM −
∑

j ̸=ν,i ̸=ν

Rmijji −
∑
j ̸=ν

Rmνjjν

=RM −
∑

j ̸=ν,i ̸=ν

Rmijji −
∑
j

Rmνjjν

=RM −
∑

j ̸=ν,i ̸=ν

Rmijji −RicM (ν, ν).
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Hence,

2RicM (ν, ν) = RM −
∑

j ̸=ν,i ̸=ν

Rmijji

Using Gauss equation on the second term, we see

Rmijji = RmΣ
ijji +hijhij − hiihjj .

Doing summation and combining the two equations above finishes the proof. □

Lemma 1.2. Let A be any symmetric 2-tensor on Σn−1, let trA = σijAij be the
trace of A, then

(1.3) σikσjlAijAkl = |A|2 ⩾ 1
n−1 (trA)

2.

Proof First, we need to show that both sides of the inequality (1.3) does not
depend on the choice of frames. (Exercise)

We can choose a frame such that σij is the identity matrix (i.e. the frame {ei}
is an orthonormal frame) and Aij = κiσij , then

|A|2 =
∑
i

κ2i , (trA)
2 = (

∑
i

κi)
2.

Then (1.3) follows from elementary arithmetic-geometric mean inequality. □

Exercise 1.1. Let A0 = A− 1
n−1 (trA)σ (A0 is called traceless part of A), prove

that |A|2 = 1
n−1 (trA)

2 + |A0|2.

1.5. Second variation of area of minimal hypersurfaces. Essentially, we are
computing the first variation of the mean curvature according to (1.1).

Lemma 1.3. We have that

(1.4) X(H) = −∆f − (RicM (ν, ν) + |A|2)f,

assuming that X = fν along Σ.

Proof We calculate directly, assume that {ei} is an orthonormal frame along Σ,
then

∇X(σij⟨∇eiν, ej⟩)
=−X(σij)hij + σij∇X⟨∇eiν, ej⟩
=− 2hijhij + σij⟨∇X∇eiν, ej⟩+ σij⟨∇iν,∇Xej⟩
=− 2|A|2 + σij Rm(X, ei, ν, ej) + σij⟨∇i∇Xν, ej⟩+ σij⟨∇iν,∇j(ϕν)⟩.

It finishes the proof if we can prove ∇Xν = −∇ϕ. Indeed,

⟨∇Xν, ei⟩ = −⟨∇Xei, ν⟩ = −⟨∇iX, ν⟩ = −∇iϕ.

□

We say that a (closed) minimal surface is stable if d2

dt2 vol(Σt)|t=0 ⩾ 0, i.e.

(1.5)

∫
Σ

|∇f |2 − (RicM (ν) + |A|2)f2 ⩾ 0,

for any f ∈ C∞(Σ). We have (see [CM11])
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Lemma 1.4. The following three are equivalent:
1) The stability (1.5) holds;
2) The operator L := −∆− (RicM (ν)+ |A|2) has a non-negative first eigenvalue

(principal eigenvalue);
3) There exists a positive C2 function ϕ such that Lϕ ⩾ 0.

If a minimal surface is stable, the third item says that we can increase the mean
curvature if deforming the hypersurface Σ in the direction ϕν.

1.6. Warped product. We say that (M = [t−, t+] × Σ, ḡ = dt2 + ϕ(t)2g0) is a
warped product. Here g0 is a metric on Σ.

Lemma 1.5. The scalar curvature of (Mn, ḡ) is given by (assuming that Σ is of
dimension n) is

(1.6) Rg = RΣϕ
−2 − n(n− 1)(ϕ′/ϕ)2 − 2(n− 1)(ϕ′/ϕ)′.

Proof We can calculate directly. Here, we use (1.4). Let Σt = {t} × Σ, then the
induced metric of ḡ is

σ = ϕ(t)2g0.

So the second fundamental form is

h = 1
2∂tσ = ϕ′

ϕ g0,

and the mean curvature of Σt is

H = tr(σ−1h) = (n− 1)ϕ
′

ϕ .

So the scalar curvature of (M, ḡ) by (1.4) is

Rg = RΣϕ
−2 −H2 − |A|2 − 2∂tH = RΣϕ

−2 − n(n− 1)(ϕ′/ϕ)2 − 2(n− 1)(ϕ′/ϕ)′,

where we also have used (1.2). □

Question 1.1 ([Gro18], Gromov’s rigid band for his band width estimate). Find
the function ϕ such that the scalar curvature of the metric dt2 + ϕ(t)2gTn−1 is
n(n− 1). How about −n(n− 1) and 0?

Question 1.2. Find the scalar curvature of ϕ(t)2(dt2 + g0) using (1.4) and (1.2).

2. Three dimensional Geroch conjecture

2.1. Gauss-Bonnet theorem.

Theorem 2.1. Let Σ be a closed oriented surface, then

2πχ(Σ) =

∫
Σ

K

where K = 1
2RΣ is the Gauss curvature.

Corollary 2.2. Let Σ be a 2-torus with Scg ⩾ 0, then Σ must be flat.
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2.2. Geroch conjecture. Below is a generalization of the two dimensional rigidity
(Corollary 2.2) made by Geroch in 1975.

Conjecture 2.3. On Tn, there does not exist a metric g with Rg ⩾ 0 except the
flat ones.

The conjecture was confirmed by Schoen-Yau [SY79] and Gromov-Lawson [GL83]
via different methods. See also Stern [Ste22] for a proof by harmonic 1-forms in
three dimensions.

2.3. Proof of Geroch conjecture in dimension 3. We show a proof of Geroch
conjecture by introducing some modern ideas [SY79], [FS80], [BBN10].

Theorem 2.4. On T3, there does not exist a metric g with Rg ⩾ 0 except the flat
ones.

Proof Let (x1, . . . , x3) be the parameters of the torus, then dx1 is dual to an
element inH2(M ;Z) (taking cap product with the fundamental class). We minimize
area in H2(M ;Z) and we obtain an area-minimizing surface Σ. By the stability
inequality,

(2.1) Q(f, f) :=

∫
Σ

|∇f |2 − (RicM (ν) + |A|2)f2 ⩾ 0.

By taking f ≡ 1 and using the (1.2), we see that

1
2

∫
Σ

RΣ ⩾ 1
2

∫
Σ

(Rg + |A|2) ⩾ 0.

Using the Gauss-Bonnet theorem on the left, we see that

2πχ(Σ) = 1
2

∫
Σ

RΣ ⩾ 1
2

∫
Σ

(Rg + |A|2) ⩾ 0.

But the left is less than or equal to zero, so Rg = |A|2 = 0 along Σ. Putting these
information back to (2.1), we see that

Q(1, 1) = 0.

This implies that f = 1 is the eigenfunction and zero is the lowest eigenvalue of

L := −∆− (RicM (ν) + |A|2) = −∆+ 1
2RΣ.

This implies that RΣ = 0 as well.

A remark: if L (linearization of H) is an invertible operator, by inverse function
theorem, then we can deform Σ such that the mean curvature of the deformed
surface attain any value near HΣ. However, L is not invertible and constant
functions are the kernel of L.

Let Z be a vector field near Σ such that Z = ν along Σ and ψ = ψ(x, t) be the
flow of Z.

Let Σu = {ϕ(x, u(x))} which is properly embedded if u has small norm. Denote
every quantity related to Σu by the subscript u.

Let E = {u ∈ C2,α :
∫
Σ
u = ⟨u, 1⟩L2 = 0} and F = {u ∈ C0,α :

∫
Σ
u = 0}. We

define

Φ : (−ε, ε)× E → F

(t, u) 7→ Ht+u − 1
|Σ|

∫
Σ

Ht+u.
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We calculate DΦ|(0,0). For u ∈ E, define f : (s, x) ∈ (−ε, ε) × Σ 7→ ϕ(x, sv(x))
gives a variation of Σ and the vector field

∂f
∂s |s=0 = uZ = uν on Σ.

We see then

DΦ|(0,0)(0, u) = d
ds |s=0Φ(0, su) = −∆u+ 1

|Σ| ⟨∆u, 1⟩L2 = −∆u.

This is an isomorphism restricted to 0×E. Implicit function theorem implies that
for small t, there exists u(t) with small norm such that Φ(t, u(t)) = 0, u(0) = 0,
Φ(0, 0) = 0. In other words, Σt+u(t) is constant mean curvature for each t.

Let w : (t, x) 7→ t+ u(t)(x), since

Hw(·,t) − 1
|Σ|

∫
Σ

Hw(·,t) = Φ(t, u(t)) = 0.

By taking derivative with respect to t, we see that ∂w
∂t |t=0 satisfies ∆(∂w∂t |t=0) = 0,

therefore, must be a constant.. Since∫
Σ

(w(x, t)− t) =

∫
Σ

u = 0.

So ∂w
∂t |t=0 = 1. So Σt+u(t) is a foliation. Now set λ(t) = Ht+u(t), Σt = Σt+u(t) then

λ′(t)v−1
t = −v−1

t ∆Σt
vt − (Ric(νt) + |AΣt

|2).
We first use the rewrite of Schoen-Yau, it leads to

λ′(t) 1
vt

= −v−1
t ∆Σtvt − 1

2 (RM −RΣt + |AΣt |2 +H2
Σt
),

with an integration, integration by parts,

λ′(t)

∫
Σt

1
vt

⩽ −
∫
Σt

v−1
t ∆Σtvt +

∫
Σt

RΣt = −
∫
Σt

|∇Σt
vt|2

v2t
+ 4πχ(Σt) ⩽ 0.

So λ′(t) ⩽ 0 for t ⩾ 0. So the mean curvature is decreasing and HΣt
= λ(t) ⩽ 0.

Now we return to the first variation of area (1.1),

d
dt |Σt| =

∫
Σt

HΣt
vt ⩽ 0.

But Σ = Σ0 is a minimiser, so every Σt is a minimiser. It is not difficult to see that
the foliation is equi-distant and extends to the whole manifold. □

Remark 2.5. The proof works through if we replace T3 with the connected sum
T3♯M where M is a closed 3-manifold.

Remark 2.6. People from PDE background may recognize the construction of con-
stant mean curvature foliation is a geometric version of the Lyapunov-Schmidt
reduction method.

Corollary 2.7. There does not exist a metric on T3♯M such that g has strictly
positive scalar curvature.

Corollary 2.8. Assume that the Geroch conjecture holds for n dimensional mani-
fold Tn♯M , there does not exist a metric on Tn♯M such that if the first eigenvalue
of the conformal Laplacian

−∆+ cnRg, cn = n−2
4(n−1)

is positive.
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Proof Let u > 0 be the first eigenfunction of −∆+ cnRg, then

(2.2) Sc(u
4

n−2 g) = c−1
n u

−n+2
n−2 (−∆u+ cnRgu) > 0.

The metric u
4

n−2 g contradicts the previous corollary. □

Exercise 2.1. This is a classic exercise in Riemannian geometry: prove the relation
(2.2).

Theorem 2.9. On Tn (3⩽ n ⩽ 7), there does not exist a metric g with Rg ⩾ 0
except the flat ones.

The proof would not be given. The theorem is also valid for a manifold which
admits a map of non-zero degree to Tn.

3. Basic theory of µ-bubbles

Let Ω′ be an open set with smooth ∂Ω′, we consider the functional

(3.1) E(Ω) = Hn−1(∂Ω)−
∫

(χΩ − χΩ′)hdHn

for all sets with finite perimeter such that Ω△Ω′ is compactly supported away from
the boundary ∂M . Here h is a Lipschitz function on M . For a reference on sets
of finite perimeter, see [Giu84]. Without loss of generality, we can assume Ω is
smooth.

Let Ωt be a smooth family of sets, such that Ω′ ⊂ Ωt for all t and Ω0 = Ω, the
first variation is given by

(3.2) d
dtE(Ωt)|t=0 =

∫
∂Ω

(H − h)ϕdHn−1.

We say that Ω is a h−bubble if the first variation vanishes. Sometimes, with-
out explicit references to the function h, we call Ω a µ-bubble. We call Σ a
surface of prescribed mean curvature h.

We call a µ-bubble is stable if the second variation d2

dt2E(Ωt)|t=0 ⩾ 0. We
calculate the second variation explicitly. Assume that variational vector field is X,
then the integrand of the second variation is given by

X((H − h)ϕdHn−1) = X(H − h)ϕdHn−1,

since H = h along ∂Ω. Using (1.4) and X(h) = ϕ∇νh, we see

(3.3) d2

dt2E(Ωt)|t=0 =

∫
∂Ω

(−∆ϕ− RicM (ν)ϕ− |A|2ϕ−∇νh)ϕ.

4. Gromov band width estimate

4.1. Band. We introduce a geometric object initiated by Gromov [Gro18] called a
band.

Definition 4.1. A band is an orientable, compact manifold M such that its bound-
ary ∂M consists at least two connected components. Let ∂−M be a union of some
connected components of ∂−M , and ∂+M = ∂M ∼ ∂−M ̸= ∅. Then band width is
given by

wi d th(M, g) = dist(∂−M,∂+M).
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Note that the band width depends on the choice of ∂−M and ∂+M . See the
following for an example of bands.

∂−M

∂−M
∂−M

∂+M

Figure 1. A band with four boundary components.

Let M0 = Tn−1 × [−1, 1] and ∂±M0 = Tn−1 × {±1}. We just call M0 a
torical band.

Gromov also introduced the over-torical band: IfM admits a continuous map
of non-zero degree f : (M,∂±M) → (M0, ∂±M0), then M is called an over-torical
band.

4.2. Existence and regularity theory of µ-bubbles.
We have the following standard result from geometric measure theory.

Theorem 4.2. For a manifold M with at least two boundary components, we as-
sume that M = ∂−M ∪ ∂+M . If H∂−M < h along ∂−M (H∂−M is calculated with
respect to the inward unit normal), H∂+M > h along ∂+M , then there exists a
minimiser Ω to the action (3.1) and ∂Ω lies away from ∂M . When the dimension
3 ⩽ n ⩽ 7, ∂Ω is free of singularities and ∂Ω is a hypersurface with regularity
C2,α ∩W 3,p. Moreover, ∂Ω is homologous to ∂±M .

Now there are two choices of unit normals to compute the mean curvature H
of ∂Ω, in the above theorem, it is chosen so that it points to the inside the region
bounded by ∂Ω and ∂+M . Note that −(H∂−M − h)ν∂−M points inside of M , we
can run the mean curvature flow Ft,

∂tF = −(H − h)ν,

which starts from ∂−M . We know the short time existences of the flow. If H∂−M −
h ⩽ 0, we can immediately have along ∂Ω that HFt < h by the maximum principle.
Hence, we can improve Theorem 4.2 a little bit.
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4.3. Gromov’s Band width estimate.

Theorem 4.3 ([Gro18]). Let (−1, 1) × Tn−1 carry a metric with Scg ⩾ n(n − 1),
then the band width of M is less than 2π

n .

Gromov proved this band width estimate for over-torical bands, for simplicity,
we only state and prove for just torical bands. Our proof is based on the geometric
applications of the µ-bubble technique, and essentially it boils down to a good
choice of h.

One naturally wonders what if the band width 2π/n is achieved. We introduce
the notion of a rigid band. A rigid band is a band which realizes the lower bound
of the (here, scalar) curvature and the width. The rigid band associated with
Theorem 4.3 is given by

((−π
n ,

π
n )× Tn−1,dt2 + cos

4
n (nt2 )gTn−1).

See Exercise 1.1. Let η(t) be the mean curvature of the level set of dt2+cos(nt2 )4/ngTn−1 .
The very important property of η is that it satisfies the ODE

(4.1) n(n− 1) + n
n−1η

2 + 2η′ = 0 and η′ < 0.

Now this ODE is essentially (1.6): η = (n− 1)ϕ′/ϕ.

Before we go on we need to fix some orientation: We fix Ω to be the region
bounded by ∂−M and a surface Σ homologous to ∂−M .

∂+M

∂−M

Ω

ν

Σ

Figure 2. What is Ω?

We fix the direction of the unit normal of Σ such that it always points outside
of Ω.
Proof Assume on the contrary that wi d th(M, g) > 2π

n , then

(4.2) d(x) = bmin
{
max{dist(x, ∂−M)− π

n − ε,−π
n},

π
n

}
where 0 < 2ε < wi d th(M, g)− 2π

n , where 0 < b < 1 is sufficiently close to 1.



10 XIAOXIANG CHAI

The construction of this function seems a bit clumsy, geometrically, we just need
this function to be linear with respect to the distance function from the boundary
and taking values [−π

n ,
π
n ] a positive distance away from ∂±M . We also know that

|∇d| < 1.
Let M1 = d−1([−π

n ,
π
n ]), and we set ∂±M1 = d−1(±π

n ) and h = η(d(x)). We
see that h(∂±M) = ∓∞. Hence, by Theorem 4.2, we can find a stable surface Σ
of prescribed mean curvature h in M1 ⊂ M . Note that Σ is stable, so the second
variation (3.3) is non-negative, that is,∫

Σ

(|∇ϕ|2 − (RicM (ν, ν)− |A|2 +∇νh)ϕ
2) ⩾ 0.

By the (1.2) and (1.3),

RicM (ν, ν) + |A|2 = 1
2 (RM −RΣ + |A|2 +H2) ⩾ 1

2 (RM −RΣ + n
n−1h

2).

Now an estimate on ∇νh is as follows,

(4.3) −∇νh = −η′(d(x))⟨∇d, ν⟩ ⩾ η′(d(x))|∇d| > η′(d(x)),

because of |∇d| < 1 and η′ < 0. So putting the above three equations together
yields ∫

Σ

(|∇ϕ|2 + 1
2RΣϕ

2) ⩾ 1
2

∫
Σ

(RM + n
n−1η

2(ϕ(x)) + 2η′(ϕ(x))) > 0,

where we have used RM ⩾ n(n− 1). We know that this is impossible because of∫
Σ

(|∇ϕ|2 + 1
2RΣϕ

2) ⩽ 0,

a consequence of Corollary 2.8. Hence, the width of (M, g) is less or equal to 2π
n .□

Question 4.1. How to prove a version of Theorem 4.3 for over-torical bands?

Question 4.2. Let M = [t−, t+] × Tn−1. Assume that M carry a smooth metric
g such that Sc ⩾ n(n− 1), and H∂−M ⩽ η(t−) and H∂+M ⩾ η(t+) where the mean
curvatures of ∂±M are computed with respect to the normals pointing to the same
direction as ∂t, η is given by (4.1), t± ∈ (−π

n ,
π
n ). Then wi d th(M, g) ⩽ t+ − t−.

Is there a rigidity statement for this band width estimate?
(Hint: construct a similar function ϕ as in (4.2) and find a surface of prescribed

mean curvature h.)

Question 4.3. Formulate a similar theorem for Sc ⩾ −n(n− 1), Sc ⩾ 0.

(Hint: rigid bands are dt2 + sinh(nt2 )
4
n gTn−1 and dt2 + (nt2 )

4
n gTn−1 .)
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4.4. Zhu’s band width estimate.

Theorem 4.4 ([Zhu21]). Let (−1, 1) × T2 carry a metric with Ric ⩾ 2, then the
band width is less than π/2.

Gromov [Gro18] originally conjectured this band width estimate to be valid for a
sectional curvature bound sec ⩾ 1. It is interesting that this rigid band in Theorem
4.4 given by

(4.4) dt2+sin1+λ t cos1−λ tds21+sin1−λ t cos1+λ tds22, where 0 ⩽ λ ⩽ 1, 0 < t < π
2 ,

which are a family of metrics. The mean curvature of each t-level set is

η(t) = cot t− tan t.

Moreover, η′ < 0 and η′ + η + 4 = 0.

Proof We argue again by contradiction and assume that the width is larger than
π/2, and as in Theorem 4.3, we construct a function d which takes values [0, π/2]
a positive distance away from ∂±M and |∇d| < 1. Take h = η(d(x)).

Now find a surface Σ of prescribed mean curvature h. But now we use the
following

Ric(ν, ν) + |A|2 = Ric(e1, e2) + Ric(e2, e2) +H2 −RΣ,

where {e1, e2} is an arbitrary orthonormal frame of Σ. Now, Ric(e1, e1) ⩾ 2 and
Ric(e2, e2) ⩾ 2 and H = h(ϕ(x)). As (4.3),

−∇νh > η′(ϕ(x)).

The rest is straightforward. □

Question 4.4. Compute the Ricci curvatures of (4.4). What is the metric if λ = 0,
1?

Question 4.5. Formulate a band width estimate with Ric ⩾ −2, Ric ⩾ 0 as in
Exercise 4.3. (unpublished, due to Yukai Sun and myself)

5. Rigidity analysis of Gromov band width estimate

Recall Gromov’s band width estimate:

Theorem 5.1 ([Gro18]). Let (−1, 1) × Tn−1 carry a metric with Scg ⩾ n(n − 1),
then the band width of M is less than 2π

n .

Recall that the rigid band is

dt2 + cos(nt2 )
4
n gTn−1 , t ∈ (−π

n ,
π
n ).

The level set has mean curvature

η(t) = −(n− 1) tan(nt2 ).

We note that η(±π
n ) = ∓∞, η′ < 0 and it satisfies the ODE

n(n− 1) + n
n−1η

2 + 2η′ = 0.

We restrict our discussion of rigidity to dimension three.
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5.1. Assume the existence of a minimiser.
Set d(x) = min{π

n ,−
π
n + dist(x, ∂−M)} and h = η(d(x)). We assume that there

exists a minimiser Ω0 to the functional

E(Ω) = Area(∂Ω)−
∫
Ω

h.

Then by the first variation, we have that Σ = ∂Ω0 satisfies

H − h = 0 along Σ.

The second variation gives∫
Σ

[|∇ϕ|2 − (Ric(ν) + |A|2 +∇νh)ϕ
2] ⩾ 0.

Using Schoen-Yau rewrite and

∇νh = η′(d(x))∇νd ⩾ η′(d(x)),

we see that ∫
Σ

[|∇ϕ|2 + 1
2RΣϕ

2]

⩾ 1
2

∫
Σ

(Rg + |A|2 +H2 + 2∇νh)

⩾ 1
2

∫
Σ

(Rg +
3
2η(d(x))

2 + 2η′(d(x))) ⩾ 0

by also the ODE which is satisfied by η. By using ϕ = 1 and Gauss-Bonnet theorem,
we see that all inequalities must be equalities. That includes:

H = h,

∇νd = 1,

A− 1
2H = 0,

Rg = 6,

RΣ = 0

along Σ.
The linearization/first variation of H − h is given by

(5.1) ∇ϕν(H − h) = −∆Σϕ− (Ric(ν) + |A|2)ϕ− ϕ∇νh,

and is reduced to only the Laplacian.

This allows us to construct surfaces {Σt}t∈[−ε,ε] of constant H − h nearby Σ
which also forms a foliation. The foliation induces a variational vector field X for
Σ.

Assume that vt = ⟨νt, X⟩. Since this is a foliation, vt > 0 for small t. Set
λ(t) = HΣt

− h|Σt
, by (5.1),

λ′(t)v−1
t = −v−1

t ∆Σtvt − (Ric(νt) + |AΣt |2)−∇νth.

Integrate, using Schoen-Yau’s rewrite, integration by parts, we can find that

λ′(t) ⩽ 0, and hence λ(t) ⩽ 0 for t ⩾ 0.
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It then follows from the first variation (3.2) that Ωt is a minimiser for all small
t > 0. Similar arguments applies to all small t < 0. Hence, we can carry all the
rigidity analysis for Ω0 to Ωt.

5.2. How to find a minimiser/issues.
Recall that the existence theorem of a surface prescribed mean curvature requires

that H∂−M ≨ h on ∂−M and H∂+M > h on ∂+M to find a stable surface of
prescribed mean curvature h.

Set d(x) = min{π
n ,−

π
n + dist(x, ∂−M)}.

Since width(M, g) = 2π
n , dist(x, ∂−M) ⩾ 2π

n for any x ∈ ∂+M (in some sense),
so d(∂+M) = π

n . But now there is no room for tweak for ϕ any more, because
|∇d| ⩽ 1, d(∂±M) = ±π

n , set h = η(d(x)) for x ∈M and H∂±M is in fact not even
defined.

How do we find a surface of prescribed mean curvature h?

Still, we can take approximations hε of h such that Mε := h−1
ε ([−π

n ,
π
n ]) still

lies a positive distance away from ∂±M , this way we can obtain a surface Σε of
prescribed mean curvature hε.

There would create problems if we take a limit of Σε! One is that Σε disappears
at infinity (to ∂±M); the other is that although Σε has nonempty intersection with
some fixed compact set K, but the portion Σε\K might also drift to ∂±M as well
resulting a possible change in topology.

The second scene is better, and actually we can make good choices of the ap-
proximations hε such that Σε ∩K ̸= ∅ for all small ε.

Now we take a look at the stability of Σε (dimension n = 3)∫
Σε

(|∇Σεϕ|2 + 1
2RΣεϕ

2) ⩾ 1
2

∫
Σε

(RM + 3
2h

2
ε + 2∇νεhε)ϕ

2

for all smooth ϕ, especially for ϕ = 1.

In dimension 3, we know that the left hand side is less or equal to zero when
ϕ = 1 no matter where Σε lies. If we can make

RM + n
n−1h

2
ε + 2∇νε

hε > 0, on Mε\K,

then Σε cannot lie entirely within Mε\K according to (5.2), hence Σε ∩ K is
nonempty. As one may expect, RM + n

n−1h
2
ε + 2∇νεhε might not have a sign

in K. You gain something, you lose something.

This strategy was first developped by G. Liu [Liu13], and since then, there were
many versions of this strategy, especially in non-compact manifolds. We are using
now a variant due to J. Zhu [Zhu21].
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5.3. Explicit construction of hε.
Now let a0 = π

n (half of the band width), we can choose an odd smooth function
β(t) : [−a0, a0] → R such that

β(t) > 0 on (0, a0],

β′(t) > 0 on [0, a0

2 ),

β′(t) < 0 on (a0

2 , a0].

See the shape of β as follows.

a0/2 a0

β

t

0

Figure 3. Shape of β on the positive t-axis.

Let η be the solution to the ODE

6 + 3
2η

2 + 2η′ = 0, η′ < 0.

For every ε > 0, now we define a perturbation ηε of η by setting ηε(t) = η(t+εβ(t))
on a sub-interval (−Tε, Tε) of [−a0, a0] such that ηε(t) → ±∞ as t = ∓Tε (or
−a0 ⩽ t+ εβ(t) ⩽ a0), we can easily calculate that

6 + 3
2η

2
ε + 2η′ε =6 + 3

2ηε(t+ εβ(t))2 + 2η′(t+ εβ(t))(1 + εβ′(t))

=2εβ′(t)η′(t+ εβ(t)).

Then we see

6 + 3
2η

2
ε + 2η′ε > 0 if a0

2 < |t| ⩽ Tε,

6 + 3
2η

2
ε + 2η′ε < 0 if |t| < a0

2 .

5.4. Approximating surface Σε.
We set hε(x) = ηε(d(x)), we set

Mε = {x : − π
n ⩽ d(x) + εβ(d(x)) ⩽ π

n}.
And ∂±Mε = {d(x) + εβ(d(x)) = ±π

n}. From the definition of Tε, the boundries
∂±Mε is prescisely where d(x) = ±Tε.

So h(∂±Mε) = ∓∞, hence, we can find a surface Σε of prescribed mean curvature
hε. From stability again,∫

Σε

(|∇Σεϕ|2 + 1
2RΣεϕ

2) ⩾ 1
2

∫
Σε

(RM + 3
2h

2
ε + 2∇νεhε)ϕ

2

⩾ 1
2

∫
Σε

(6 + 3
2ηε(d(x))

2 + 2η′ε(d(x))).



BAND WIDTH ESTIMATES 15

By construction, Σε does not drift to ∂±M , because it stays inside Mε.

We set

K = {x ∈M : |d(x)| ⩽ a0

2 }.

Also, Σε can not lie entirely inside where 1
2a0 ⩽ |d(x)| ⩽ Tε, that is, Σε ∩K ̸= ∅.

5.5. What happens in the limit.
Now we take limit of Σε as ε→ 0. In the region {|d(x)| ⩽ a0−δ}, δ > 0, the limit

of Σε behaves well, since the prescribed mean curvature hε is uniformly bounded
(also ∇hε is uniformly bounded as well). We can invoke some compactness theorem
(up to a subsequence), the limit Σ is smooth in {−δ < d(x) < δ} and hence in all
M\∂±M . Also, Σ ∩K ̸= ∅.

But it still possible that some part of Σ drift to infinity. This is where the
dimension come into play. We can take ϕ = 1 and apply the Gauss-Bonnet theorem,

0 ⩾ 1
2

∫
Σε

(6 + 3
2ηε(d(x))

2 + 2∇νε
hε) on Σε.

Note that Σε has genus higher than or equal to one. From simple re-arranging of
the above, we have for Σε that∫

Σε

(⟨νε,∇d⟩ − 1)η′ε ◦ d ⩽ −
∫
Σε

[6 + 3
2 (ηε ◦ d)

2 + η′ε ◦ d]

= −ε
∫
Σε

β′(d)η′(d+ εβ(d))

= −ε

(∫
Σε∩K

+

∫
Σε\K

)
β′(d)η′(d+ εβ(d))

⩽ −ε
∫
Σε∩K

β′(d)η′(d+ εβ(d))

⩽ CεArea(Σε ∩K).

Note that η′ε ◦ d < 0 and ⟨νε,∇d⟩ − 1 ⩽ 0, so the limit ν = limε νε satisfies
⟨ν,∇d⟩ = 1. Hence, Σ must be a level set of d.

Now we can carry the rigidity analysis as before.

5.6. A remark on higher dimensions.
In higher dimensions, you can still construct a Σ such that Σ always intersect

a compact subset of M . However, in higher dimensions we do not have the extra
control from the Gauss-Bonnet theorem.

6. Spectral scalar curvature bound

From now on, the notes would be a bit more focused on the research. Gromov
asked the following question in [Gro19, Section 6.1.2]:
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What are effects on the topology and/or metric geometry of a Riemannian man-
ifold X played by the positivity of the

Lγ : f(x) 7→ −∆f(x) + γ · Sc(X,x)f(x)

for a given constant γ > 0?
The spectral property of this operator is famously used in Chodosh-Li’s work

[CL23] in settling the stable Bernstein conjecture. Here we are concerned with
a result which generalizes Gromov’s band width estimate by replacing the scalar
curvature with the condition that

λ1(Lγ) > 0.

We also have some results if Sc(X,x) (in Gromov notation) is replaced by the Ricci
curvature.

Theorem 6.1. (joint with Yukai Sun 2025) For a Riemannian bandMn = [−1, 1]×
Tn−1 (3 ⩽ n ⩽ 7) with a smooth metric g, let u be a positive smooth function on
M\∂M with u = 0 on ∂M such that

−γ∆gu+ 1
2Rgu = Λu,

where Λ > 0, 0 < γ < 2. Then

width(M, g) ⩽
π

√
Λ
√

−nγ+γ+2n
4(n−1)+2γ(2−n)

.

Using similar techniques, we can prove a spectral version of Zhu’s band width
estimate with Ricci curvature lower bound (Theorem 4.4). The proof is basically
identical to that of the scalar curvature bound except that we use

Ric(ν, ν) + |A|2 = Ric(e1, e2) + Ric(e2, e2) +H2 −RΣ,

instead of Schoen-Yau’s rewrite.

7. Warped µ-bubble

For every γ > 0, we define for every open set Ω with smooth boundary

E(Ω) =

∫
∂∗Ω

uγ −
∫
(χΩ − χΩ0

)huγ

where Ω− ⊂ Ω0 ⊂ Ω+, where u > 0 and h is again a Lipschitz function.
We consider a smooth one-parameter family of deformations Ωt of Ω, we can

calculate the first variation of the functional E:

0 = d
dtE(Ωt)|t=0 =

∫
∂Ω

(H + γu−1uν − h)uγϕ

where ϕν is the variational vector field. Here,

uν = ⟨∇u, ν⟩.

We assume that 0 < γ < 2.

Definition 7.1. We say that Ω is a warped µ-bubble if H + γu−1uν − h = 0 along
∂Ω.
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Remark 7.2. More generally, one can also consider

E(Ω) =

∫
∂∗Ω

uα −
∫

(χΩ − χΩ0
)huγ ,

with different exponents α and γ.

In calculating the second variation for E when Ω is a warped µ-bubble, we only
have to calculate the variation ∇ϕν(H + γu−1uν − h). We have see ∇ϕνH − h. It
remains to calculate ∇ϕν(u

−1uν). We see

∇ϕν(u
−1uν)

=(−ϕu−2uν)uν + u−1∇ϕν⟨∇u, ν⟩
=− ϕu−2u2ν + u−1⟨∇ϕν∇u, ν⟩+ u−1⟨∇u,∇ϕνν⟩
=− ϕu−2u2ν + u−1ϕHessu(ν, ν)− u−1⟨∇u,∇Σϕ⟩.

From the stability inequality,

0 ⩽ d2

dt2E(Ωt)|t=0

=

∫
Σ

[−∆Σϕ− |A|2ϕ− Ric(ν, ν)ϕ

− γu−2u2νϕ+ γu−1ϕHessu(ν,ν)− γu−1⟨∇Σu,∇Σϕ⟩
− hνϕ]u

γϕ

=

∫
Σ

[−∆Σϕ− |A|2ϕ− Ric(ν, ν)ϕ

− γu−2u2νϕ+ γu−1ϕ(∆u−∆Σu−Huν)− γu−1⟨∇Σu,∇Σϕ⟩
− hνϕ]u

γϕ.(7.1)

We collect the following three terms

∫
Σ

[∆Σϕ+ γu−1ϕ∆Σu+ γu−1⟨∇Σu,∇Σϕ⟩]uγϕ.

Observe that uγϕ∆Σϕ comes from the variation of mean curvature, we want to
make this term looks like ψ∆Σψ, at least, in dimension three, we can then make
ψ = 1 and run the standard proofs.
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This is done via setting ϕ = u−γ/2ψ. We have∫
Σ

[∆Σϕ+ γu−1ϕ∆Σu+ γu−1⟨∇Σu,∇Σϕ⟩]uγϕ

=

∫
∂Ω

[ψ∆Σu
−γ/2 + 2⟨∇Σu

−γ/2,∇Σψ⟩+ u−γ/2∆Σψ + γu−1−γ/2ψ∆Σu

+ γu−1⟨∇Σu,∇Σ(u
−γ/2ψ)⟩]uγ/2ψ

=

∫
Σ

ψ∆Σψ

+

∫
Σ

[uγ/2ψ2∆Σu
−γ/2 + 2uγ/2ψ⟨∇Σu

−γ/2,∇Σψ⟩

+ γu−1ψ2∆Σu+ γuγ/2−1ψ⟨∇Σu,∇Σ(u
−γ/2ψ)⟩]

=−
∫
Σ

|∇Σψ|2

+

∫
Σ

[−⟨∇Σ(u
γ/2ψ2),∇Σu

−γ/2⟩+ 2uγ/2ψ⟨∇Σu
−γ/2,∇Σψ⟩

− γ⟨∇Σ(u
−1ψ2),∇Σu⟩+ γuγ/2−1ψ⟨∇Σu,∇Σ(u

−γ/2ψ)⟩].

In the last line we have used integration by parts on the two terms containing ∆Σu
and the term containing ∆Σψ. By a direct calculation, we conclude that∫

Σ

[∆Σϕ+ γu−1ϕ∆Σu+ γu−1⟨∇Σu,∇Σϕ⟩]uγϕ

=−
∫
Σ

|∇Σψ|2 +
∫
Σ

[−γψ⟨∇Σw,∇Σψ⟩+ (γ − γ2

4 )ψ2|∇Σw|2]

where we have set w = log u. Using the above, ϕ = u−γ/2ψ and w = log u in (7.1),
we see

0 ⩽
∫
Σ

|∇Σψ|2 +
∫
Σ

[γψ⟨∇Σw,∇Σψ⟩+ (γ
2

4 − γ)ψ2|∇Σw|2]

+

∫
Σ

[γu−1∆u− (|A|2 +Ric(ν))]ψ2

−
∫
Σ

[γHwν + hν + γw2
ν ]ψ

2.(7.2)

7.1. Considering the spectral condition. We assume that

−γ∆u+ 1
2Rgu = Λu

where Λ > 0, 0 < γ < 2, u > 0.
Using Schoen-Yau rewrite,

|A|2 +Ric(ν) = 1
2 (Rg −RΣ + |A|2 +H2)
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and |A|2 ⩾ H2/(n− 1), we have∫
Σ

[γu−1∆u− (|A|2 +Ric(ν))]ψ2

⩽
∫
Σ

[
γu−1∆u− 1

2 (Rg −RΣ + n
n−1H

2)
]
ψ2

=

∫
Σ

(
1
2RΣ − n

2(n−1)H
2 − Λ

)
ψ2.

Using the above and that H = −γwν + h in (7.2), we arrive

0 ⩽
∫
Σ

|∇Σψ|2 +
∫
Σ

[γψ⟨∇∂Ωw,∇∂Ωψ⟩+ (γ
2

4 − γ)ψ2|∇Σw|2]

+

∫
Σ

[ 12RΣ − n
2(n−1) (−γwν + h)2 − Λ]ψ2

−
∫
Σ

[γ(−γwν + h)wν + hν + γw2
ν ]ψ

2

=

∫
Σ

|∇Σψ|2 + 1
2RΣψ

2 +

∫
Σ

[γψ⟨∇Σw,∇Σψ⟩+ (γ
2

4 − γ)ψ2|∇Σw|2]

−
∫
Σ

[
( n
2(n−1)γ

2 − γ2 + γ)w2
ν − 1

n−1γhwν + n
2(n−1)h

2 − |∇h|+ Λ
]
ψ2.

Since γ2/4− γ < 0, so by Cauchy-Schwarz inequality,∫
Σ

[γψ⟨∇Σw,∇Σψ⟩+ (γ
2

4 − γ)ψ2|∇Σw|2] ⩽ 1
4γ(1−

γ
4 )

−1

∫
Σ

|∇Σψ|2.

and by Cauchy-Schwarz inequality,

( n
2(n−1)γ

2 − γ2 + γ)w2
ν − 1

n−1γhwν + n
2(n−1)h

2

⩾

[
− γ2

4( n
2(n−1)γ

2 − γ2 + γ)(n− 1)2
+ n

2(n−1)

]
h2

=
−nγ + γ + 2n

4( n
2(n−1)γ − γ + 1)(n− 1)

h2,

which is positive by the assumption 0 < γ < 2. Therefore,

0 ⩽(1 + 1
4γ(1− γ/4)−1)

∫
Σ

|∇Σψ|2 + 1
2

∫
Σ

RΣψ
2

−
∫
Σ

[
−nγ + γ + 2n

4( n
2(n−1)γ − γ + 1)(n− 1)

h2 − |∇h|+ Λ

]
h2.

7.2. A remark on the rigidity analysis. Our final form (or consequence) of
the stability of the weighted µ-bubble is similar to the un-weighted version of the
µ-bubble. In dimension three, the rigidity is based on the study of

H + γu−1uν − h.
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