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Abstract. We give a weak formulation of spectral scalar curvature bounded

from below via establishing a dihedral rigidity result. Given some special con-

vex polyhedron, if another metric are of non-negative spectral scalar curvature
in the interior, with weighted mean-convex faces, and with its dihedral angles

less than or equal to their flat polyhedral model everywhere along the edges,

then the metric must be flat. This is motivated by Gromov’s definition of a
weak notion of non-negative scalar curvature.

1. Introduction

Gromov [Gro14] initiated the study of scalar curvature for C0 metrics and he
gave the following definition.

Definition 1.1. Given a continuous metric g on M , we say that Rg ⩾ 0 in the
C0 sense at a point p ∈ M if around p there does not exist a cube such that its
face is strictly mean-convex and the dihedral angles are acute.

It can be equivalently formulated in the dihedral rigidity conjecture for cubes
[Gro14] which states that a Riemannian metric on a Euclidean convex polyhedron
of non-negative scalar curvature, with weakly mean-convex faces and non-obtuse
angles must be flat. There is an alternative definition using the Ricci flow [Bur19].

The dihedral rigidity conjecture has been proved in several cases: Li confirmed
the conjecture for Euclidean frusta and pyramids [Li20a] in dimension 3 with some
additional assumptions as well as for n-prisms [Li24], up to dimension seven. Bren-
dle [Bre24] and Brendle-Wang [BW23] confirmed the Euclidean conjecture with
additional hypothesis on angles. The most general case was claimed by Wang-Xie-
Yu [WXY22]. There is also a hyperbolic version of the conjecture for parabolic
cubes, see Gromov [Gro14], Li [Li20b], Wang-Xie [WX23]; for the hyperbolic ver-
sion modeled on polyhedra in the upper half-space model of the hyperbolic space,
see Chai-Wang [CW24b] and Chai-Wan [CW24a]. The dihedral rigidity can be
put in a broader context of scalar curvature rigidity, among which the earliest of
such results are the Geroch conjecture [SY79a], [GL83] and positive mass theorems
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[SY79b], [Wit81]. In these early works, two major techniques of scalar curvature
geometry, minimal surface and spinors were developed.

The spectral scalar curvature is defined as the first eigenvalue of an elliptic
operator which is the sum of the Laplacian and the scalar curvature. We denote the
first eigenvalue by λ1(−γ∆g+

1
2Rg). Here, Rg is the scalar curvature and ∆g is the

Laplacian-Beltrami operator. We only consider the case γ > 0 and the coefficient
1
2 on Rg is for convenience. For a closed manifold (M, g), Rg ⩾ 0 obviously implies

that λ1(−γ∆g +
1
2Rg) ⩾ 0, hence, λ1(−γ∆g +

1
2Rg) ⩾ 0 is a weaker condition.

Here, we give a slight different version more suitable for manifolds with boundary.

Definition 1.2. Let (M, g) be a Riemannian manifold and u be a positive function,
we call

(1.1) −γu−1∆gu+ 1
2Rg

the spectral scalar curvature. Given an oriented hypersurface Σ with a chosen unit
normal N , we call H + γu−1∂Nu the weighted mean curvature. We will explicitly
indicate the dependence on γ and u if needed. Here, H = divΣN is the mean
curvature of Σ in (M, g).

In a closed manifold, −γu−1∆gu+
1
2Rg ⩾ 0, u > 0 is easily seen to be equivalent

to that the first eigenvalue of the operator −γ∆g +
1
2Rg is non-negative.

Analogous to Gromov’s definition [Gro14] (i.e., Definition 1.1) of non-negative
scalar curvature for C0 metrics, we have the definition: given a continuous positive
function u and a continuous metric g on M , we say that −γu−1∆gu+

1
2Rg ⩾ 0 in

the C0 sense at a point p ∈ M if around p there does not exist a cube such that
its face is strictly weighted mean-convex and the dihedral angles are acute.

This is just a definition by simply replacing the scalar curvature and the mean
curvature in by their spectral, or weighted counterparts. Similar statements can
be made for arbitrary convex polyhedra among which we find it more convenient
to state for the cubes. We would like to formulate −γu−1∆gu+

1
2Rg ⩾ Λ in the C0

sense as well, where Λ is a negative constant and the case γ = 0 was conjectured
by Gromov [Gro14] (cf. [CW24b, Conjecture 1.1]).

Most generally, we have the following Gromov dihedral rigidity conjecture for
the spectral scalar curvature.

Conjecture 1.3. Let 0 ⩽ γ < 2n
n−1 , Λ ⩽ 0 and

β =

√
−2Λ√

2(n− 1)− (n− 2)γ
√
2n− (n− 1)γ

, α = (2− γ)β, h = (n− 1)α+ βγ.

Let Ω be a convex polyhedron in the Euclidean space with a distinguished unit
vector N0, Ni be the Euclidean unit normal vector of the face Fi of Ω pointing
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outward of Ω. Let g be a metric and u be a function defined on a neighborhood of
Ω̄. If u > 0 on Ω̄ and g satisfies

−γu−1∆gu+ 1
2Rg ⩾ Λ in Ω,

and

HFi
+ γu−1 ∂u

∂νi
⩾ −h⟨N0, Ni⟩ =: −h cos θ̄i along every Fi,

and the dihedral angles αi,j ⩽ ᾱi,j along the edge Fi ∩ Fj, then (Ω, g) is isometric
to some polyhedron in the upper half-space model ḡ = 1

α2t2 (dt
2 + gRn−1) and u is

a constant multiple of ū = t−β/α.

Remark 1.4. We call Ω with the Riemannian metric g a Riemannian polyhedron,
and Ω with the flat metric a reference polyhedron or just a reference which we
denote by P .

Remark 1.5. In horocyclic coordinates, ḡ = ds2 + e2αsgRn−1 and u = eβs (t =

α−1e−αs, s = log(αt)
−α ). The metric ḡ and the function ū were found by the author

and Yukai Sun (Henan University, China; in preparation) where gRn−1 is replaced
by the flat metric on the torus.

Remark 1.6. There is some freedom to consider the condition

(1.2) −γu−1∆gu+ 1
2Rg + cu−2|∇gu|2 ⩾ Λ

with suitable range of c and γ, we leave the reader to deduce Proposition 2.4 for
(1.2) and formulate corresponding Conjecture 1.3.

1.1. Frustum and pyramid. With some additional conditions, we confirm Con-
jecture 1.3 for two types of polyhedra which we now describe.

Definition 1.7. Let k ⩾ 3 be an integer, B1 ⊂ {x3 = 0} and B2 ⊂ {x3 = 1}
be two similar k-polygons whose corresponding edges are parallel. We call the set
{tp + (1 − t)q : p ∈ B1, q ∈ B2} a (B1, B2)-frustum, B1 its base face and B2 its
top face. (Most of the time, we just call the (B1, B2)-frustum a frustum.)

A frustum (plural, frusta) is a portion of a solid that lies between two parallel
planes cutting the solid. It is a solid itself.

Definition 1.8. Let k ⩾ 3 be an integer, B ⊂ {x3 = 0} be a k-polygon and
p ∈ {x3 = 1}. We call the set {tp + (1 − t)q : q ∈ B} a (B, p)-pyramid (or just
pyramid if the references to B and p are clear), p the apex of the pyramid and B
the base.

Remark 1.9. The frustum defined here is what Li [Li20a, Definition 1.3] called a
(B1, B2)-prism and the pyramid is what he called a (B, p)-cone, see also [CW24b,
Definition 1.3].
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Figure 1.1. A frustum and a pyramid.

Theorem 1.10. Conjecture 1.3 holds in dimension 3 (in which case 0 ⩽ γ < 3)
for frustum with the additional assumption that the bottom face of the reference is
normal to N0, and for any neighboring faces Fj and Fj+1, the angle condition

|π − (αj + αj+1)| < αj,j+1

holds. Here, αj is the dihedral angle of Fj with the base face and αj,j+1 is the
dihedral angle formed by Fj and Fj+1. The same conclusion holds for the pyramid
if the pyramid has an isometric tangent cone at the apex to the tangent cone of its
Euclidean model or it is a tetrahedron.

Remark 1.11. In dimension 3, β =
√
−Λ√

4−γ
√
3−γ , α = (2−γ)

√
−Λ√

4−γ
√
3−γ and h =

√
4−γ
3−γ .

When γ = 2, α = 0 and it will cause a minor issue which can be resolved by
changing coordinates, see Remark 1.5.

Theorem 1.10 is the natural spectral analog of [Li20a] and [CW24b], in fact,
the polyhedra considered here are precisely those already considered in [Li20a] and
[CW24b], also the techniques are quite similar. Theorem 1.10 serves as a starting
point for future work on generalizations in higher dimensions and to more types
of polyhedra.

A simple consequence of Theorem 1.10 is that the weak notions of spectral scalar
curvature −γu−1∆gu+

1
2Rg ⩾ Λ for some constant Λ ⩽ 0 makes sense. Hence, we

answered the question of formulation of −γu−1∆gu + 1
2Rg bounded from below

in the C0 sense. It might be interesting to explore this definition using the Ricci
flow, cf. [Bur19], also, it is an interesting question to explore the preservation of
the lower bound −γu−1∆gu + 1

2Rg ⩾ Λ with respect to the connvergence of C0

metrics, see [Gro14]. It is also an interesting question to look for analog of [CW24a],
[CW23] and [KY24], which will be addressed in a future work.

The article is organized as follows:

In Section 2, we introduce the capillary warped µ-functional, calculate its first
and second variation, in particular, we relate the spectral curvature condition (1.1)
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to the second variation. In Sections 3 and 4, we prove the frustum and pyramid
case of Theorem 1.10.

2. Capillary warped µ-bubble

In this section, we study a capillary version of the warped µ-bubble, in partic-
ular, we give the related geometric functional, calculate its first and second vari-
ations. Most importantly, we relate the second variation with the spectral scalar
curvature.

We setup some notations: Let Σ be a surface which meet Ω transversely, and E
be a connected component of Ω\Σ. Let

• N be the unit normal of Σ in Ω,
• X be the unit outward normal of ∂Ω in Ω,
• ν the unit outward normal of ∂Σ in Σ,
• η be the unit normal of ∂Σ in Ω which points outward of ∂E ∩ ∂Ω,
• and θ ∈ (0, π) be the contact angle between Σ and ∂Ω defined by cos θ =
⟨X,N⟩.

See Figure 2.1.

N

X

ν

η

θ
Σ

Figure 2.1. Labelling of various normal vectors.

2.1. Capillary warped µ-bubble. We define the warped µ-bubble functional

F(E) =

∫
∂E∩intM

uγdH2 −
∫
E

uγµdH3 −
∑
j

∫
∂E∩Fj

uγ cos θ̄jdH2, E ∈ E ,

where E is defined as the set of the contractible open sets E′ ⊂ E ′ and E ′ is given
by

E ′ :=

{
{E ⊂M : p ∈ E,E ∩B = ∅}, P is a pyramid,
{E ∈M : B1 ⊂ E, E ∩B2 = ∅}, P is a frustum.
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And j run through all indices such that {Fj} run through all side faces. We consider
the variational problem

(2.1) I = inf{F(E) : E ∈ E}.

For every C1,α surface Σ and a smooth family of diffeomorphisms ϕt : Σ → Ω such
that ϕt(∂Σ) ⊂ ∂Ω, Σt = ϕt(Σ) such that Σ0 = Σ, we define

(2.2) A(t) =

∫
Σt

uγdH2 +

∫
Et

µuγdH3 −
∑
j

∫
∂Et∩Fj

cos θ̄ju
γdH2,

where Et ∈ E is the connected component of Ω\Σ closer to the vertex or the top
face. The first variation is given by

A′(0) =

∫
Σ

(γ⟨∇u, Y ⟩uγ−1 + uγ divΣ Y − µuγ⟨Y,N⟩)−
∑
j

∫
∂Σ∩Fj

cos θ̄ju
γ⟨Y, η⟩,

here Y = ∂
∂tϕt is the vector field associated with ϕt. We decompose Y = Y ⊤ +

Y ⊥ where Y ⊥ is the component normal to Σ. Let ϕ = ⟨Y,N⟩, then Y ⊥ = ϕN ,
⟨∇u, Y ⟩ = ⟨∇u, Y ⊤⟩+ ϕ⟨∇u,N⟩, divΣ Y = ϕH + divΣ Y

⊤ and

A′(0) =

∫
Σ

divΣ(u
γY ⊤) +

∫
Σ

(H + γu−1uN − µ)ϕ−
∑
j

∫
∂Σ∩Fj

cos θ̄ju
γ⟨Y, η⟩.

We set cos θ = ⟨X,N⟩, then ⟨Y, η⟩ = −f/ sin θ and ⟨Y, ν⟩. Integration by parts for
the first term yields

A′(0) =

∫
Σ

(H + γu−1uN − µ)ϕ+
∑
j

∫
∂Σ∩Fj

uγ(⟨Y, ν⟩ − cos θ̄j⟨Y, η⟩)

=

∫
Σ

(H + γu−1uN − µ)ϕ−
∑
j

∫
∂Σ∩Fj

uγϕ
sin θ (cos θj − cos θ̄j).(2.3)

Definition 2.1. We say that Σ is a capillary warped µ-bubble if A′(0) = 0 for all
Et. Equivalently,

H + γu−1uN − µ = 0 in Σ,

⟨X,N⟩ = cos θ̄j along ∂Σ ∩ Fj .

Definition 2.2. We say that Σ is a stable capillary warped µ-bubble if A′′(0) ⩾ 0
for all Et. The inequality A′′(0) ⩾ 0 is called the stability inequality.

Now we calculate the second derivatives of A if Σ is a capillary warped µ-bubble.

Lemma 2.3. If Σ is a capillary warped µ-bubble, then

A′′(0) =

∫
Σ

uγϕ(−∆Σϕ−γu−1ϕ∆Σu−γu−1⟨∇Σu,∇Σϕ⟩+Zϕ)+
∑
j

∫
∂Σ∩Fj

uγϕ(∂ϕ∂ν−qϕ),
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where w = log u,

Z := −|A|2 − Ric(N)− γw2
Nϕ+ γu−1∆gu− γHwN ,

and

(2.4) q = 1
sin θ̄j

A∂M (η, η)− cot γ̄A(ν, ν).

Proof. Since Σ is a capillary warped µ-bubble, we have

(2.5) A′′(0) =

∫
Σ

δY (H + γu−1uN − µ)ϕ−
∑
j

∫
∂Σ∩Fj

uγϕ
sin θj

δY (cos θj − cos θ̄j).

It suffices to only compute the first variation of H + γwN − µ and cos θ − cos θ̄.
First,

δY (H + γwN − µ) = δY (H + γwN )

=−∆Σϕ− (|A|2 +Ric(N))ϕ− γu−2u2Nϕ+ γu−1ϕ∇2
NNu− γu−1⟨∇Σu,∇Σϕ⟩+∇Y ⊤(H + γwN )

=−∆Σϕ− γu−1ϕ∆Σu− γu−1⟨∇Σu,∇Σϕ⟩+ Zϕ

(2.6)

where we have used ∇2
NNu = ∆gu−∆Σu−HuN and Y ⊤ is the component of Y

tangential to Σ. Note that ∇Y ⊤(H + γwN ) = 0 since H + γwN is constant along
Σ. Using [RS97, Appendix], we find that

(2.7) δY cos θj = − sin θj
∂ϕ
∂ν + qϕ+∇Y ∂Σ cos θj ,

where Y ∂Σ is the component of Y tangential to ∂Σ. Inserting (2.6) and (2.7) into
(2.5) finishes the proof. □

2.2. Rewrite. Now we give the crucial rewrite which is vital to our proof.

Proposition 2.4. Let ψ = uγ/2ϕ, then

A′′(0)

= 4
4−γ

∫
Σ

|∇Σψ|2 − (1− γ
4 )γ

∫
Σ

∣∣∣ψ∇Σw − 1
2(1−γ/4)∇Σψ

∣∣∣2

+

 1
2

∫
Σ

RΣψ
2 +

∑
j

∫
∂Σ∩Fj

κ∂Σψ
2

−

∫
Σ

Wψ2 +
∑
j

∫
∂Σ

1
sin θ̄j

(H∂M + γ∂Xw − µ cos θ̄j)ψ
2

 ,

(2.8)
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where

W :=
(

3−γ
4−γµ

2 + (−γu−1∆gu+ 1
2Rg)

)
+ 1

2 (|A|
2 − 1

2H
2) + (1− 1

4γ)(wN − 1
4−γµ)

2.

Proof. It follows from Schoen-Yau’s rewrite

|A|2 +Ric(N) = 1
2Rg −

1
2RΣ + 1

2 |A|
2 + 1

2H
2,

of the twicely constracted Gauss equation, H = −γwN+µ and suitable regrouping
that

(2.9) Z = −W + 1
2RΣ.

By a direct calculation using ψ = uγ/2ϕ,

uγϕ(−∆Σϕ− γu−1ϕ∆Σu− γu−1⟨∇Σu,∇Σϕ⟩)

=− ψ∆Σψ + (γ
2

4 − γ)ψ2|∇Σw|2 − γ
2ψ

2∆Σw

=|∇Σψ|2 + (γ
2

4 − γ)ψ2|∇Σw|2 + γ⟨∇Σw,∇Σψ⟩
− divΣ(ψ∇Σψ)− div(γ2ψ

2∇Σw)

= 4
4−γ |∇Σψ|2 − (1− γ

4 )γ
∣∣∣ψ∇Σw − 1

2(1−γ/4)∇Σψ
∣∣∣2

− divΣ(ψ∇Σψ)− divΣ(
γ
2ψ

2∇Σw).(2.10)

Integration of the above omitting the divergence term, and (2.9) show the terms
of the integration over Σ in (2.8).

It is left to deal with the boundary integration. We have collecting the divergence
term in (2.10) and using the divergence theorem that

∑
j

∫
∂Σ∩Fj

uγϕ(∂ϕ∂ν − qϕ)−
∫
Σ

(divΣ(ψ∇Σψ) + divΣ(
γ
2ψ

2∇Σw))

=
∑
j

∫
∂Σ∩Fj

(eγw/2ψ ∂(e
−γw/2ψ)
∂ν − ψ∂νψ − γ

2ψ
2∂νw − qψ2)

=−
∑
j

∫
∂Σ∩Fj

(γ∂νw + q)ψ2.

Recall that the rewrite (see [RS97, Lemma 3.1] or [Li20a, (4.13)])

q = 1
sin θ̄j

A∂M (η, η)− cot θ̄jA(ν, ν) = −H cot θ̄j +
H∂M

sin θ̄j
− κ,
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and using H = −γwN + µ, we have

γ∂νw + q

=γ∂νw + (−(µ− γ∂Nw) cot θ̄j +
H∂M

sin θ̄j
− κ)

=− κ+ 1
sin θ̄j

(H∂M + γ(cos θ̄∂Nw + sin θ̄∂νw)− µ cos θ̄j)

=− κ+ 1
sin θ̄j

(H∂M + γ∂Xw − µ cos θj).(2.11)

This finishes the proof. □

Remark 2.5. When Σ only satisfies the contact angle condition, but H+γu−1uN−
µ =: H̃ might not vanish along Σ, then Z and W satisfy

(2.12) Z = −W + 1
2RΣ − 3

4H̃
2 − 1

2H̃(3µ− γwN )

instead of (2.9). And instead of (2.11),

(2.13) γ∂νw + q = −κ+ 1
sin θ̄j

(H∂M + γ∂Xw − µ cos θj)− H̃ cot θj .

3. Rigidity of frustums

In this section, we prove the rigidity of frusta.

3.1. Infinitesimal rigidity.

Lemma 3.1. Let E be a stable capillary µ-bubble in (Ω, g) specified in Theorem
1.10, then Σ := ∂E ∩ intΩ is infinitesimally rigid, that is,

∇Σw = 0, |A|2 − 1
2H

2 = 0, − γu−1∆gu+ 1
2Rg = Λ,

wN = − 1
4−γh, RΣ = 0 in Σ,

H∂M + γ∂Xw = −h cos θ̄j , κ∂Σ = 0 along ∂Σ ∩ Fj ,
αj = ᾱj at x ∈ ∂Σ ∩ Ej .

Proof. Putting ψ = 1 in (2.8) yields

0 ⩽− (1− γ
4 )γ

∫
Σ

|∇Σw|2

+

 1
2

∫
Σ

RΣ +
∑
j

∫
∂Σ∩Fj

κ∂Σ

−

∫
Σ

W +
∑
j

∫
∂Σ

1
sin θ̄j

(H∂M + γ∂Xw + h cos θ̄j)

 .

(3.1)
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First, by the Gauss-Bonnet theorem,

1
2

∫
Σ

RΣ +
∑
j

∫
∂Σ∩Fj

κ∂Σ +
∑
j

(π − αj) = 2πχ(Σ),

where αj are the interior turning angles of ∂Σ at a non-smooth point of ∂Σ. Since
αj ⩽ ᾱj , and

∑
j(π − ᾱj) = 2π, so

(3.2) 1
2

∫
Σ

RΣ +
∑
j

∫
∂Σ∩Fj

κ∂Σ ⩽ 0.

Then we check that W ⩾ 0 due to |A|2 −H2/2 ⩾ 0, −γu−1∆gu + 1
2Rg ⩾ Λ and

3−γ
4−γh

2+Λ = 0. Also, H+γ∂Xw ⩾ −h cos θ̄j by the assumptions. So the inequality

(3.1) is an equality, and tracing back, we obtain that

∇Σw = 0,

|A|2 − 1
2H

2 = 0,

−γu−1∆gu+ 1
2Rg = Λ,

wN = 1
4−γh in Σ,

H∂M + γ∂Xw = −h cos θ̄j along ∂Σ ∩ Fj ,
αj = ᾱj at x ∈ ∂Σ ∩ Ej .

(The second, third and fourth together are implied by W = 0). It remains to show
that RΣ = 0 and κ∂Σ = 0. First, we see that A′′(0) = 0 by the above. Let

Q(ψ,ψ)

= 4
4−γ

∫
Σ

|∇Σψ|2 +

 1
2

∫
Σ

RΣψ
2 +

∑
j

∫
∂Σ∩Fj

κ∂Σψ
2


−

∫
Σ

Wψ2 +
∑
j

∫
∂Σ∩Fj

1
sin θ̄j

(H∂M + γ∂Xw − µ cos θ̄j)ψ
2

 .

Note that Q(ψ,ψ) differs from the form (2.8) of A′′(0) by only one term, and
Q(ψ,ψ) ⩾ A′′(0) = 0. In fact,

Q(ψ,ψ) = 4
4−γ

∫
Σ

|∇Σψ|2 +

 1
2

∫
Σ

RΣψ
2 +

∑
j

∫
∂Σ∩Fj

κ∂Σψ
2

 ⩾ 0.

Let L = − 4
4−γ∆Σ + 1

2RΣ, B = 4
4−γ ∂ν + κ∂Σ. By (3.2), Q(1, 1) = 0, so L1 = 0 and

B1 = 0, which gives RΣ = 0 and κ∂Σ = 0. □
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3.2. Local foliation. Now we construct a local foliation near an infinitesimally
rigid Σ. We state here a slightly more general version.

Lemma 3.2. Let Σ be a capillary surface of prescribed weighted mean curvature ,
if the linearization of H+γu−1uN+h is −∆Σ and the linearization of cos θ−cos θ̄ is
− sin θ ∂

∂ν , then there exists a local foliation {Σt}t∈(−ε,ε) near Σ such that Σ0 = Σ,

H + γu−1uN + h is constant along Σt and θ = θ̄ along ∂Σt.

Remark 3.3. A combination of [CS25, Lemma 3.4] and [Li20a, Proposition 4.1]
finishes the proof, see also [Ye91], [Amb15].

Now we derive an ODE for the quantity H̃ = H+γu−1uN+h along the foliation.
This step is the boundary version of [CS25, Lemma 4.4]. However, [CS25, Lemma
4.4] is only for dimension greater than three, here we make use of the Gauss-Bonnet
theorem with boundary and turning angles.

Lemma 3.4. Let {Σt} be constructed in Lemma 3.2, assume that (Ω, g) satisfies
the assumptions of Theorem 1.3, then

d
dt (exp(−

∫ t

0

Ψ(s)ds)H̃)′ ⩽ 0,

where

Ψ(t) = (

∫
Σt

ϕ−1
t )−1

− 1
2

∫
Σt

(3µ− γwN ) +
∑
j

∫
∂Σt∩Fj

cot θj

 .

Proof. The first variation (2.6) gives

ϕ−1
t H̃ ′(t) = −ϕ−1

t ∆Σt
ϕt − γu−1∆Σt

u− γu−1ϕ−1
t ⟨∇Σt

u,∇Σt
ϕt⟩+ Z,

which is equivalent to the following

ϕ−1
t H̃ ′(t) = −divΣt

(
∇Σtϕt

ϕt
+ γ∇Σt

w
)
−(1−γ

4 )ϕ
−2
t |∇Σt

ϕt|2−γ
∣∣∣∇Σt

w +
∇Σtϕt

2ϕt

∣∣∣2+Z.



12 XIAOXIANG CHAI

Here, ϕt is the variational vector field of the foliation {Σt}. We integrate the above
on Σt and using the divergence theorem,

H̃ ′
∫
Σt

ϕ−1
t +

∫
Σt

(
(1− γ

4 )ϕ
−2
t |∇Σt

ϕt|2 + γ
∣∣∣∇Σt

w +
∇Σtϕt

2ϕt

∣∣∣2)
=−

∑
j

∫
∂Σt∩Fj

(ϕt∂νtϕt + γ∂νw) +

∫
Σt

Z

=−
∫
∂Σt∩Fj

(qt + γ∂νtw) +

∫
Σt

Z

=
∑
j

∫
∂Σt∩Fj

(κ∂Σt − 1
sin θ̄j

(H∂M + γ∂Xw − µ cos θj)) + H̃
∑
j

∫
∂Σt∩Fj

cot θj

+

∫
Σt

(
−W + 1

2RΣ − 3
4H̃

2 − 1
2H̃(3µ− γwN )

)
,

where we have used (2.12) and (2.13). Since W ⩾ 0,

(3.3) H̃ ′
∫
Σt

ϕ−1
t ⩽ H̃

− 1
2

∫
Σt

(3µ− γwN ) +
∑
j

∫
∂Σt∩Fj

cot θj

 .

Solving this ODE, we finish the proof. □

3.3. Proof of rigidity of frustum. Now we are ready to prove the dihedral
rigidity conjecture for frusta.

Proof of Theorem 1.10 for frusta. Using the existence and regularity theory in
[Li20a, Theorem 2.1], there exists a minimiser E to (2.1) such that Σ = intM ∩∂E
is C1,α up to the corner (Li’s theorem is based on scaling argument, and u will
play no role in the limit.).

Given any Σ, we can define A as in (2.2). Let F (t) = A(Σt) where Σt is the
leaf of the foliation in Lemma 3.2. Then by the first variation (2.3),

F ′(t) =

∫
Σt

(H + γu−1uN + h)dHn−2,

note that there is no boundary term because that the contact angle is θj = θ̄j
along the edges. Using Lemma 3.4, F ′(t) ⩽ 0 for t ⩾ 0 and F ′(t) ⩾ 0 for t ⩽ 0
which means that every Σt also gives rise to a minimiser to the functional. By
Lemma 3.1, every Σt is infinitesimal rigid. Now we calculate the metric of (Ω, g)
and u using the infinitesimal rigidity. Moreover, by tracing back the equality, we
have that ϕt is constant. Using wN = −h/(4 − γ) and H = −γwN − h, we see
H = 2(γ − 2)h/(4 − γ) = −2α which is constant. We now show that Y ⊥ is
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conformal. First, ∇∂iN = H∂i. Since ⟨Y,N⟩ is constant,

0 = ∇∂i⟨Y,N⟩
= ⟨∇∂iY,N⟩+ ⟨Y,∇∂iN⟩
= Y ⟨∂i, N⟩ − ⟨∇YN, ∂i⟩+H⟨Y, ∂i⟩
= −⟨∇YN, ∂i⟩+H⟨Y, ∂i⟩.

Observe that

∇YN = ∇Y ⊤N +∇Y ⊥N = HY ⊤ +∇Y ⊥N, ⟨Y, ∂i⟩ = ⟨Y ⊤, ∂i⟩,

hence ⟨∇Y ⊥N, ∂i⟩ = 0. Moreover, ∇Y ⊥⟨∂i, ∂j⟩ = ⟨Y ⊥, N⟩gij = 1
2Hϕtgij by the

umbilicity |A|2− 1
2H

2 = 0. Note that every leaf is flat, therefore, the local foliation
forms a subset ∪tΣt of the hyperbolic 3-space with constant curvature −|α|. It
follows from wN = −h/(4 − γ) that u = t−β/α (up to a constant). We now
calculate the second fundamental form of ∂Ω. Let e be a unit tangent vector of
∂Σ. Along the face Fj , using the decomposition Xj = cos θjN + sin θjν,

AFj
(e, e) = ⟨∇eX, e⟩ = cos θjA(e, e) + sin θjκ∂Σ = 1

2H cos θj .

It follows from H∂M + γ∂Xw = −h cos θ̄j that H∂Ω = H cos θ̄j , and hence

AFj (η, η) = ⟨∇ηX, η⟩ = H∂Ω − ⟨∇eX, e⟩ = 1
2H cos θj .

Note that the vector N − ⟨η,N⟩η is of length sin θj , and the direction is the same
with X, so

AFj
(e, η) = ⟨∇eX, η⟩ = 1

sin θj
⟨∇e(N − ⟨η,N⟩η), η⟩ = 0.

Hence, every face Fi is umbilic with curvature 1
2H cos θj . In the upper half-space

model of the hyperbolic 3-space, the face is either a part of a sphere or a plane.
That each face Fi intersects the leaf Σt in a constant angle indicates that it can
only be a part of a plane. Therefore, by connectedness, we can extend the rigidity
to all Ω and (Ω, g) is a polyhedron in the upper half-space model. □

4. Rigidity of pyramids

In this section, we give the proof for rigidity of pyramids. Our method is to
construct a local foliation near the apex which serves as a barrier for the existence
of the minimisers to the warped µ-bubble functional.

First, we construct a local foliation near the apex O.

Proposition 4.1. Let (Ω, g) and (Ω, δ) have isometric tangent cones at O. Then
there exists a neighborhood U of O foliated by a family of surfaces {Σt}t∈(−ε,0)
such that each Σt is of constant H+γωN +h and meets the face Fi at the constant
angle θi.
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Remark 4.2. From now on, in some situations, we omit the dependence of θ and
θ̄ on the indices of the faces for brevity.

It is more useful to reformulate. The pyramid (Ω, δ) is formed by truncating its
tangent cone at the apex through the base. We let Σ1 be the cross-section parallel
to the base and of unit distance to the apex O and Ω1 to be the pyramid truncated
by Σ1. Let Σt = tΣ1 and Ωt = tΩ1, t > 0. Let x ∈ Ω1, we define v(x) = u(tx) and
(ĝt)ij(x) = gij(tx).

We consider

Σt,ϕ := {(x̌,−t+ ϕ(x̌)) : (x̌,−1) ∈ Σ1},

Let every geometric quantity of Σ1 be denoted with a hat and a subscript t with
respect to the metric ĝ := ĝt, and let every geometric quantity on Σ1,ϕ be denoted
by a hat and a subscript t, ϕ. For example, the unit normal of Σ1 in Ω1 with respect
to the metric ĝ is given by N̂t, and the unit normal of Σ1,ϕ is given by N̂t,ϕ.

By rescaling back using Proposition 4.3, we obtain the proof of Proposition 4.1.
Indeed, let

λ̂t,ϕ := Ĥt,ϕ + γv−1∂N̂t,ϕ
v + th.

Proposition 4.3. There exists a family of functions {ϕ(·, t)}t∈[0,ε) defined on
Σ1 such that the perturbations Σ1,tϕ(·,t) has constant λt,tϕ(·,t) and have constant
angles with Fi with respect to the metric gt.

Proof. Let s be a small parameter and the family Σ1,sϕ give rise to a vector field
∂s := (0, ϕ(x̌)). The perturbation Σ1,sϕ of Σ1 is approximately a normal graph

over Σ1 with the graph function ϕ̂ satisfying

ϕ̂ := sĝ(∂s, N̂t) +O(s2),

Setting s = t, then the graph function

ϕ̂ = tϕ+O(t2)

since ĝ converges to the flat metric.

By the first variation of λt,sϕ and the Taylor expansion (with respect to s),

λt,sϕ − λt,0 = L̂sϕ̂+ s⟨(∂s)⊤,∇ĝtλt,0⟩+O(s2) = sL̂sϕ+ s⟨(∂s)⊤,∇ĝtλt,0⟩O(s2)

by (4) where L̂s is define for Σ1 as (2.6) with respect to the metric gt. Setting
s = t yields

λt,sϕ = λt,0 + tL̂tϕ+ t⟨(∂s)⊤,∇ĝtλt,0⟩+O(t2).

By convergence of ĝ to the flat metric and u converges to the flat metric, L̂t =
−∆Σ1

+O(t) where ∆Σ1
is the Laplace-Beltrami operator with respect to the flat
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metric (i.e., limit of ĝ) on Σ1, and ⟨(∂s)⊤,∇ĝtλt,0⟩ = O(t). So

(4.1) λt,tϕ = λt,0 −∆Σ1
ϕ+O(t2),

Similarly using (2.7),

(4.2) cos θ̂t,tϕ = cos θ̂t,0 − t sin θ̂t,0
∂ϕ
∂νt

+ tq̂tϕ+ t⟨(∂s)∂Σ1 ,∇θ̂t,0⟩+O(t2),

where q̂t is defined in (2.4) for Σ1 with respect to the metric gt.

Since the (Ω1, g
t) converges to the flat pyramid and u converges to a constant,

L̂t = −∆Σ1
+O(t) and similarly, sin θ̂ ∂

∂νt
= sin θ ∂

∂ν1
+O(t) and qt = O(t).

Define

Ψ(t, ϕ) =

(
1
tλt,tϕ −

1
|Σ1|

∫
Σ1

1
tλt,tϕ,

1

t sin θ
(cos θ̂t,tϕ − cos θ̄)

)
,

which can be extended to t = 0 by taking limits Ψ(0, ϕ) = limt→0 Ψ(t, u). By the
expansion (4.1) and (4.2),

Ψ(0, ϕ) = (−∆Σ1ϕ+ 1
|Σ1|

∫
Σ1

∆Σ1ϕ,−
∂ϕ
∂ν1

+ ζ),

where ζ := limt→0
cos θ̂t,0−cos θ̄

t sin θ̄
is a function on ∂Σ1.

By minimising the functional

I(ϕ) =

∫
Σ1

|∇Σ1
ϕ|2 +

∫
Σ1

ζϕ

on the space

Λ0 = {ϕ ∈ C2,α(Σ1) ∩ C1,α(Σ̄1) :

∫
Σ1

ϕ = 0},

we can find a solution to the elliptic problem Ψ(0, ϕ) = 0, and we set the solution
to be ϕ0.

Now we compute

DΨ|(0,ϕ0)(0, ϕ) =
d
ds |s=0Ψ(0, ϕ0 + sϕ)

= d
ds |s=0s(−∆Σ1

ϕ+ 1
|Σ1|

∫
Σ1

∆Σ1
ϕ,−∂ϕ

∂ν )

=(−∆Σ1ϕ+ 1
|Σ1|

∫
Σ1

∆Σ1ϕ,−
∂ϕ
∂ν ),

since ϕ0 satisfies Ψ(0, ϕ0) = 0. Now we apply the implicit function theorem. For
some sufficiently small ε > 0, there exists a function ϕ(·, t) ∈ B(0, δ) ⊂ X , t ∈ (0, ε)
such that ϕ(·, 0) = ϕ0 and

Ψ(t, ϕ(·, t)) = Ψ(0, ϕ0) = (0, 0)
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for every t ∈ [0, ε). In geometric terms, the surface Σt,ϕ(·,t) are of constant λt,ϕ(·,t)
with constant contact angles θ̄j with the face Fj . □

Lemma 4.4. Let Σ1,tϕ(·,t) be constructed as in Proposition 4.3, then

λt,tϕ|Σ1| =
∫
Σ1

λt,0 +

∫
∂Σ1

1
sin θ̄

(cos θ̄ − cos θ) +O(t2).

Proof. This follows from (4.1), (4.2) by integration over Σ1 and an application of
the divergence theorem. □

We give a variational formula which gives a relation of the variations of−γu−1∆gu+
1
2Rg, H + γu−1∂Nu and the dihedral angles.

Proposition 4.5. Let {ut} be a family of positive C2 functions and {gt} be a
family of smooth metrics on Ω1 converging respectively to the constant 1 and the
flat metric as t→ 0. Then

[−
∫
Σ1

(Hg + γu−1∂Nu) +

∫
∂Σ

1
sin θ̄

(cos θ̄ − cos θ)]

=

∫
Ω1

(−γu−1∆gu+ 1
2Rg) +

∫
∂Ω1\Σ1

(Hg + γu−1∂Xu) +O(t2).

Proof. The case ut is a constant for all t is due to [MP22], so we only have to show

−
∫
∂Ω1

u−1∂Nu =

∫
Ω1

u−1∆gu+

∫
∂Ω1\Σ1

u−1∂Xi
u+O(t2).

The above follows from that u−1 = 1 +O(t) and the divergence theorem. □

By taking the difference between (u1, g1) and (u2, g2), we obtain the following.

Corollary 4.6. Let {u(i)t }i=1,2 be two families of positive C2 functions and {g(i)t }i=1,2

be two families of smooth metrics on Ω1 converging respectively to the constant 1
and the flat metric as t→ 0. Then

[−
∫
Σ1

((Hg1 + γu−1∂Nu)− (Hg2 + γu−1∂Nu)) +

∫
∂Ω1

1
sin θ̄

(cos θ(1) − cos θ(2))]

=

∫
Ω1

((−γu−1∆gu+ 1
2Rg)− (−γu−1∆gu+ 1

2Rg))

+

∫
∂Ω1\Σ1

((Hg + γu−1∂Xu)− (Hg + γu−1∂Xu)) +O(t2).

Now we are ready to finish the proof of Theorem 1.3 for pyramids.
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Proof of Theorem 1.10 for pyramids. Note that

λt,tϕ = H1,tϕ + γu−1∂Nu+ th,

where th is −(H1,tϕ+γu
−1∂Nu) computed with respect to the model. Hence, λt,tϕ

is the difference of the weighted mean curvatures with respect to two different
metrics. Note that θ̄ is the same with the model. Hence subsequent applications of
Lemma 4.4 and Corollary 4.6 shows that λt,tϕ ⩾ O(t2). Equivalently, by rescaling

back, we obtain that H̃t ⩾ O(t) for the foliation {Σt} in Proposition 4.1. The

condition H̃t ⩾ O(t) gives an initial value for the ordinary differential inequality
(3.3) (with a reversed direction) which is easily seen to hold for {Σt} as well. We
write the ODE here

H̃ ′ ⩾ H̃Ψ(t),Ψ(t) = ( 12

∫
Σt

(3h+ γwN )−
∑
j

∫
∂Σt∩Fj

cot θj)(

∫
Σt

ϕ−1
t )−1

We see that ϕt = 1+O(t),
∑
j

∫
∂Σt∩Fj

cot θj = Ct+O(t2) for some constant C > 0

(see Remark 4.7) since the foliation in Proposition 4.1 is constructed from higher
order perturbations of coordinate bases. Hence Ψ(t) = Ct−1 + C1(t) where C1(t)
is a bounded continuous function. Hence,

d

dt
(H̃tC exp(

∫ t

C1(s)ds)) ⩾ 0

and we obtain that H̃ ⩾ 0 for every leaf. This gives a barrier for the existence of
minimiser to the capillary warped µ-functional for the polyhedron Ω\Et obtained
by chopping off the pyramid over Σt. Applying the proof for the rigidity of frus-
tums, we know that the rigidity holds Ω\Et, which by taking a limit t → 0, we
obtain the rigidity for the pyramids. □

Remark 4.7. We explain why
∑
j

∫
∂Σt∩Fj

cot θj = Ct + O(t2) holds. It suffices

to consider the flat metric and t = 1 by rescaling. Let O′ be the projection of O to
the plane where Σ1 lies and Ej = Fj ∩ ∂Σ1. We see then that cot θj is the signed
distance of O′ to the line where Ej lies formed by Ej. So |∂Σ1 ∩Fj | cot θj is twice
the area of an oriented triangle formed by O′ and Ej, and summing over all Fj
gives twice the area of Σ1, that is, the constant C.
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