RIGIDITY AND WEAK NOTIONS OF SPECTRAL SCALAR
CURVATURE

XIAOXIANG CHAI

ABSTRACT. We give a weak formulation of spectral scalar curvature bounded
from below via establishing a dihedral rigidity result. Given some special con-
vex polyhedron, if another metric are of non-negative spectral scalar curvature
in the interior, with weighted mean-convex faces, and with its dihedral angles
less than or equal to their flat polyhedral model everywhere along the edges,
then the metric must be flat. This is motivated by Gromov’s definition of a
weak notion of non-negative scalar curvature.

1. INTRODUCTION

Gromov [Grol4] initiated the study of scalar curvature for C° metrics and he
gave the following definition.

Definition 1.1. Given a continuous metric g on M, we say that Ry > 0 in the
C° sense at a point p € M if around p there does not exist a cube such that its
face is strictly mean-convex and the dihedral angles are acute.

It can be equivalently formulated in the dihedral rigidity conjecture for cubes
[Grol4] which states that a Riemannian metric on a Euclidean convex polyhedron
of non-negative scalar curvature, with weakly mean-convex faces and non-obtuse
angles must be flat. There is an alternative definition using the Ricci flow [Burl9].

The dihedral rigidity conjecture has been proved in several cases: Li confirmed
the conjecture for Euclidean frusta and pyramids [Li20a] in dimension 3 with some
additional assumptions as well as for n-prisms [Li24], up to dimension seven. Bren-
dle [Bre24] and Brendle-Wang [BW23| confirmed the Euclidean conjecture with
additional hypothesis on angles. The most general case was claimed by Wang-Xie-
Yu [WXY22]. There is also a hyperbolic version of the conjecture for parabolic
cubes, see Gromov [Grol4], Li [Li20b], Wang-Xie [WX23]; for the hyperbolic ver-
sion modeled on polyhedra in the upper half-space model of the hyperbolic space,
see Chai-Wang [CW24b] and Chai-Wan [CW24a]. The dihedral rigidity can be
put in a broader context of scalar curvature rigidity, among which the earliest of
such results are the Geroch conjecture [SY79al, [GL83] and positive mass theorems

1
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[SY79b], [Wit81]. In these early works, two major techniques of scalar curvature
geometry, minimal surface and spinors were developed.

The spectral scalar curvature is defined as the first eigenvalue of an elliptic
operator which is the sum of the Laplacian and the scalar curvature. We denote the
first eigenvalue by A\1(—yAy+ 2 Ry). Here, Ry is the scalar curvature and Ay is the
Laplacian-Beltrami operator. We only consider the case v > 0 and the coefficient
% on R, is for convenience. For a closed manifold (M, g), Ry > 0 obviously implies
that A (—vA, + %Rg) > 0, hence, A1 (—vA, + %Rg) > 0 is a weaker condition.
Here, we give a slight different version more suitable for manifolds with boundary.

Definition 1.2. Let (M, g) be a Riemannian manifold and u be a positive function,
we call

(1.1) —yu 'Agu+ iR,
the spectral scalar curvature. Given an oriented hypersurface 3 with a chosen unit
normal N, we call H +yu~'0nu the weighted mean curvature. We will explicitly

indicate the dependence on 7y and u if needed. Here, H = divy N is the mean
curvature of ¥ in (M, g).

In a closed manifold, —Vu_lAgu—i— %Rg > 0, u > 0 is easily seen to be equivalent
to that the first eigenvalue of the operator —yA, + %Rg is non-negative.

Analogous to Gromov’s definition [Grold] (i.e., Definition of non-negative
scalar curvature for C° metrics, we have the definition: given a continuous positive
function u and a continuous metric g on M, we say that f’yu’lAgu + %Rg > 0in
the CO sense at a point p € M if around p there does not exist a cube such that
its face is strictly weighted mean-convex and the dihedral angles are acute.

This is just a definition by simply replacing the scalar curvature and the mean
curvature in by their spectral, or weighted counterparts. Similar statements can
be made for arbitrary convex polyhedra among which we find it more convenient
to state for the cubes. We would like to formulate —vu’lAgu—l— %Rg > A in the C°
sense as well, where A is a negative constant and the case v = 0 was conjectured
by Gromov [Grol4] (cf. [CW24bl Conjecture 1.1]).

Most generally, we have the following Gromov dihedral rigidity conjecture for
the spectral scalar curvature.

Conjecture 1.3. Let 0 < v < %, A <0 and
Vv —2A
V2 —1) = (n = 2)yy/2n — (n = 1)y

Let Q be a convex polyhedron in the FEuclidean space with a distinguished unit
vector Ng, N; be the Euclidean unit normal vector of the face F; of Q) pointing

B= s a=02-=7)8, h=(n—-1a+py.
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outward of 2. Let g be a metric and u be a function defined on a neighborhood of
Q. If u >0 on Q and g satisfies

—'yu_lAgu + %Rg > A in Q,
and
Hp, + yuflg—;‘i > —h{Ny, N;) =: —hcosb; along every F;,
<

and the dihedral angles o j < &; ; along the edge F; N F}, then (0, g) is isometric
to some polyhedron in the upper half-space model § = —= (dt? + ggn-1) and u is

a?t?

a constant multiple of @ = t—P/.

Remark 1.4. We call Q with the Riemannian metric g a Riemannian polyhedron,
and Q with the flat metric a reference polyhedron or just a reference which we
denote by P.

Remark 1.5. In horocyclic coordinates, § = ds® + €>**ggpn—1 and u = ?* (t =

a"le @, 5= W) The metric g and the function u were found by the author

and Yukai Sun (Henan University, China; in preparation) where grn—1 is replaced
by the flat metric on the torus.

Remark 1.6. There is some freedom to consider the condition
(1.2) —yu T Agu+ SRy + cuT?|Vaul? > A

with suitable range of ¢ and vy, we leave the reader to deduce Proposition [2.]] for
(11.2) and formulate corresponding Conjecture .

1.1. Frustum and pyramid. With some additional conditions, we confirm Con-
jecture [L.3] for two types of polyhedra which we now describe.

Definition 1.7. Let k > 3 be an integer, By C {23 = 0} and By C {a® = 1}
be two similar k-polygons whose corresponding edges are parallel. We call the set
{tp+ (1 —t)q: p € B1,q € B2} a (B, Ba)-frustum, By its base face and By its
top face. (Most of the time, we just call the (B1, Ba)-frustum a frustum.)

A frustum (plural, frusta) is a portion of a solid that lies between two parallel
planes cutting the solid. It is a solid itself.

Definition 1.8. Let k > 3 be an integer, B C {2® = 0} be a k-polygon and
p € {23 = 1}. We call the set {tp+ (1 —t)q: q € B} a (B,p)-pyramid (or just
pyramid if the references to B and p are clear), p the apex of the pyramid and B
the base.

Remark 1.9. The frustum defined here is what Li [Li20al Definition 1.3] called a
(B1, Ba)-prism and the pyramid is what he called a (B, p)-cone, see also [CW24b),
Definition 1.3].



4 XTAOXIANG CHAI

FIGURE 1.1. A frustum and a pyramid.

Theorem 1.10. Conjecture holds in dimension 8 (in which case 0 < v < 3)
for frustum with the additional assumption that the bottom face of the reference is
normal to Ny, and for any neighboring faces F; and Fj 1, the angle condition
| — (o + )| < @

holds. Here, o is the dihedral angle of F; with the base face and «; j11 is the
dihedral angle formed by F; and Fj11. The same conclusion holds for the pyramid
if the pyramid has an isometric tangent cone at the apex to the tangent cone of its
Euclidean model or it is a tetrahedron.

- - _ __ VA _ @2yVA —  [4=
Remark 1.11. In dimension 3, f = T T Uiy and h = 3
When v = 2, a = 0 and it will cause a minor issue which can be resolved by
changing coordinates, see Remark[1.5.

Theorem is the natural spectral analog of [Li20a] and [CW24b], in fact,
the polyhedra considered here are precisely those already considered in [Li20a] and
[CW24b)], also the techniques are quite similar. Theorem serves as a starting
point for future work on generalizations in higher dimensions and to more types
of polyhedra.

A simple consequence of Theorem[I.10]is that the weak notions of spectral scalar
curvature —Vu_lAgu + %Rg > A for some constant A < 0 makes sense. Hence, we
answered the question of formulation of —yu=tAju + %Rg bounded from below
in the C° sense. It might be interesting to explore this definition using the Ricci
flow, cf. [Burl9], also, it is an interesting question to explore the preservation of
the lower bound —yu " 'Agju + %Rg > A with respect to the connvergence of C°
metrics, see [GroI4]. It is also an interesting question to look for analog of [CW24a],
[CW23] and [KY24], which will be addressed in a future work.

The article is organized as follows:

In Section [2] we introduce the capillary warped p-functional, calculate its first
and second variation, in particular, we relate the spectral curvature condition (1.1J)
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to the second variation. In Sections [3] and [} we prove the frustum and pyramid
case of Theorem [1.10]

2. CAPILLARY WARPED 1-BUBBLE

In this section, we study a capillary version of the warped p-bubble, in partic-
ular, we give the related geometric functional, calculate its first and second vari-
ations. Most importantly, we relate the second variation with the spectral scalar
curvature.

We setup some notations: Let ¥ be a surface which meet 2 transversely, and E
be a connected component of Q\X. Let

N be the unit normal of ¥ in Q,

X be the unit outward normal of 9 in §,

v the unit outward normal of 9% in ¥,

7 be the unit normal of 9% in Q which points outward of 9E N 02,

and 6 € (0,7) be the contact angle between ¥ and 92 defined by cos 6 =
(X, N).

See Figure

FicUre 2.1. Labelling of various normal vectors.

2.1. Capillary warped p-bubble. We define the warped p-bubble functional
F(E) = / wYdH? —/ u”ud?—[g — Z/ u” coséjd’}-[Q, Eecé,
dENint M E T JOENF,

where £ is defined as the set of the contractible open sets E C £ and £’ is given
by
& {ECM:pe E,ENB =0}, Pisapyramid,
: {EeM: BiCE, ENBy; =0}, Pisa frustum.
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And j run through all indices such that { F;} run through all side faces. We consider
the variational problem

(2.1) I =inf{F(FE): E€é&}.

For every C1® surface ¥ and a smooth family of diffeomorphisms ¢; : ¥ — € such
that ¢,(9%) C 09, X; = ¢(X) such that g = 3, we define

(2.2) A(t) :/ u“’d?—[2+/ uu”d?—[?’fZ/ cos O;u7dH?,
N Eq 5 JoE.NF,

where E; € £ is the connected component of Q\Y closer to the vertex or the top
face. The first variation is given by

A'(0) = / (Y{(Vu, YYu'™t +u? divg Y — pu? (Y, N)) — Z/ cos 0;u7 (Y, n),
2 O¥NF.

here Y = %(ﬁt is the vector field associated with ¢;. We decompose ¥ =Y T +
Y+ where Y= is the component normal to ¥. Let ¢ = (Y, N), then Y+ = ¢N,
(Vu,Y) = (Vu,YT) + ¢(Vu, N), divy Y = ¢H + divs YT and

’0)=/EdivE(uWT)+/(H+w un — ) — Z/ cos 0,u7 (Y, 7).

OXNF;

We set cosf = (X, N), then (Y,n) = —f/sinf and (Y, v). Integration by parts for
the first term yields

A = [ (H 470 - u¢+2/az . — cos 0¥, )
n
(2.3) /(H—i—'yu Yun — p)p — Z/@z - sme (cosB; — cosB;).
n

Definition 2.1. We say that ¥ is a capillary warped p-bubble if A’(0) = 0 for all
FE:. Equivalently,

H+~yuuy —p=0in 3,
(X,N) = cosb; along 9L N Fj.

Definition 2.2. We say that ¥ is a stable capillary warped p-bubble if A”(0) >0
for all Ey. The inequality A”(0) > 0 is called the stability inequality.

Now we calculate the second derivatives of A if ¥ is a capillary warped p-bubble.

Lemma 2.3. If ¥ is a capillary warped p-bubble, then

() = [ w0 o(-Aso=yu oA (Vs Tsd)+20) oY [ wotd-a0).

OXNF;
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where w = logu,
Z = —|A? = Ric(N) — ywk ¢ +yu ' Aju — yHuwy,
and

(2.4) q= s1119 ——Aanr(n,m) — cot YA(v, v).

Proof. Since ¥ is a capillary warped p-bubble, we have

(25) A//( ) /5y(H+'Yu 1UN — ¢ Z/ sm@ 5y COS@ COSéj).

ILNF;
It suffices to only compute the first variation of H + ywy — p and cos — cos .
First,

oy (H +ywn — p) = 6y (H +ywn)

=— As¢ — (JAP® + Ric(N))p — yu*u ¢ + yu~ ' ¢V yu — yu ' (Vsu, Vo) + Vyr (H + ywn)
2.6)
— Asd —yu ' dAsu — yu  (Vsu, Vo) + Zo

—~

where we have used V4 yu = Ayju — Asu— Huy and Y is the component of Y
tangential to 3. Note that Vyr (H + ywy) = 0 since H + ywy is constant along
Y. Using |[RS97, Appendix], we find that

(2.7) dy cosf; = —sin 0] 5. +q® + Vyos cos b,

where Y 9% is the component of Y tangential to 3. Inserting (2.6)) and 1nto
finishes the proof.

2.2. Rewrite. Now we give the crucial rewrite which is vital to our proof.

Proposition 2.4. Let ¢ = u)/2¢, then

A// (0)

f/ Vs = (1= Dy [ [00sw - g Vs|

+ / Rstp® + Z/asz koxp? | — /ET/Vw2 + Z/az sinléj (Hanr +yO0xw — pucos 0;)1)?
j
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W= (2202 + (™ Agu+ 3 Ry)) + 3(APR = $H) + (1= 49 (wy — £250)™

Proof. Tt follows from Schoen-Yau’s rewrite

|A|* + Ric(N) = %Rg—%Rz+%|A|2+%H2,

of the twicely constracted Gauss equation, H = —ywy + p and suitable regrouping
that
(2.9) Z =-W + Ry.

By a direct calculation using ¢ = u)/2¢,

W d(—Asd — yu 'oAsu — yu~ (Vsu, Vo))
= —9YAst + ( —7)Y?|Vswl® — J¥*Asw
=Vt + (4 — 13| Vswl® +4(Vew, Vi)

—divg (¥Vsy) — div(2¢*Vsw)

2
— 5 Vsul? = (1= D)7 [V - 5ty Vs
(2.10) — divs (¥ V) — dive(29*Vsw).

Integration of the above omitting the divergence term, and (2.9) show the terms
of the integration over ¥ in ([2.8).

It is left to deal with the boundary integration. We have collecting the divergence
term in (2.10) and using the divergence theorem that

Z /asz, WIo(Gy —at) - /Z(divz(wvmb) + divs(39*Vsw))

e “rw/
-3 [ @t o - e, - i)
OXNF;

=— dy 2,
zj:/aij(v w + q)Y

Recall that the rewrite (see [RS97, Lemma 3.1] or [Li20al (4.13)])

L Agn(n,n) — cot 0;A(v,v) = —H cot §; + Hom —

sin 9

q9= sm@
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and using H = —vywy + i, we have
YO,w +q
=0, w + (—(u — yOnw) cot ; + Ifr‘;’g’ —K)
=— K+ 51n9 (Honr + v(cos 00nw + sin 09, w) — pcos ;)
(2.11) =—Kr+ sm9 (Hom + yOxw — pcosbj).
This finishes the proof. (I

Remark 2.5. When ¥ only satisfies the contact angle condition, but H4vyutuy—
w=: H might not vanish along X3, then Z and W satisfy

(2.12) Z=-W+ LRy —3H* - LH3u - ywy)
instead of (2.9). And instead of (2.11)),
(2.13) Yow+q = —/<;—|-Sln9 (Hanr + y0xw — pucos ;) — H cot ;.

3. RIGIDITY OF FRUSTUMS

In this section, we prove the rigidity of frusta.

3.1. Infinitesimal rigidity.

Lemma 3.1. Let E be a stable capillary p-bubble in (Q,g) specified in Theorem
then ¥ := OF Nint Q is infinitesimally rigid, that is,

Vsw =0, |[A? = 1H?> =0, —qu'Aju+ iR, =A,
wWwN = —ﬁh, RZ =0 1in E,
Hopn +vOxw = —hcoséj, kox = 0 along 0¥ N F},
Oéj:O_éj atmE@EﬂEj.

Proof. Putting ¥ = 1 in (2.8)) yields

/ Vsul?

%/Rz—FZ/ Koy | — /W—FZ/ sinlé.(HaM +78Xw+hcos§j)
by 5 JOENE; = 5 Jox ’

O

(3.1)
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First, by the Gauss-Bonnet theorem,
%/Rz-‘rZ/ Kaz-‘rZ(ﬂ'—Oéj):Qﬂ'X(Z),
b j 8Er1Fj j

where o; are the interior turning angles of 9% at a non-smooth point of 9. Since
aj < ay, and Y (m — ay) = 27, so

(3.2) l/ Ry, + / Koy < 0.
> Js Zj: OSNF;

Then we check that W > 0 due to |[A]> — H?/2 > 0, —yu'Aju + %Rg > A and
30p2 4 A = 0. Also, H+~8xw > —hcosf; by the assumptions. So the inequality
1 g J
(3.1) is an equality, and tracing back, we obtain that
ng = 0,
|A|? — iH? =0,
—yuTr A ju + %Rg =A,
wN = ﬁh in X,
Haon + v0xw = —hcos f; along 0% N Fj,
aj = a; at ¢ € 0¥ N Ej.

(The second, third and fourth together are implied by W = 0). It remains to show
that Ry = 0 and kgx = 0. First, we see that A”(0) = 0 by the above. Let

QY,

¥, )
_ 4 2 1 2 2
—4,7/2|V2¢| + 2/2321/1 +;/{3£ij Koz

— / W¢2+Z/ ﬁ(H{;M—|—’y(9xw—ucoséj)w2
by 5 JOSNF; g

Note that Q(+,v) differs from the form (2.8) of A”(0) by only one term, and
Q,v) = A”(0) = 0. In fact,

= = “+ (3 [ Bey? >l >o.
Q) 4_7/2|V2¢| + 2/2 S0 +zj:/ampjﬁaz¢ =

Let £ = —72 As + § Ry, B= 1229, + rox. By 3:2), Q(1,1) = 0, 50 £1 =0 and
B1 = 0, which gives Ry, = 0 and kyx = 0. O
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3.2. Local foliation. Now we construct a local foliation near an infinitesimally
rigid 3. We state here a slightly more general version.

Lemma 3.2. Let X be a capillary surface of prescribed weighted mean curvature ,
if the linearization of H+~u " ‘un+h is —As, and the linearization of cos §—cos 0 is
—sin 98%, then there exists a local foliation {X¢}ic(—c.) near ¥ such that X = X,
H + ’yufluN + h is constant along ¥; and 0 = 0 along 0%;.

Remark 3.3. A combination of [CS25, Lemma 3.4] and [Li20al, Proposition 4.1]
finishes the proof, see also [Ye91], [Amb15].

Now we derive an ODE for the quantity H = H~+~u~'uy+h along the foliation.
This step is the boundary version of [CS25] Lemma 4.4]. However, [CS25, Lemma
4.4] is only for dimension greater than three, here we make use of the Gauss-Bonnet
theorem with boundary and turning angles.

Lemma 3.4. Let {3} be constructed in Lemma[3.9, assume that (Q,g) satisfies
the assumptions of Theorem[I.3, then

%(exp(_/o W(s)ds) HY <0,

where

OV R E Y CTEETNES oY M

5, .NF;

Proof. The first variation (2.6) gives

o H (t) = —¢7 ' As, ¢ — yu~ As,u — yu~ o H(Vs,u, Vs, b)) + Z,

which is equivalent to the following

~ 2
o7 (1) = —divs, (V22 4+ 9Vs,w) ~(1-])67 % Vi~ [Vn,w + 52 42
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Here, ¢ is the variational vector field of the foliation {X;}. We integrate the above
on X; and using the divergence theorem,
2)

H [ o +/ ((1 - DoV til® + 7|V + T
3 I
:f§;/ m@m+wmwf/z
j 62tﬂFj P

=—/ <%+v@ﬂo+/'z
BEtﬂFj pa

— 1 ]
72/@2 mF-waEt - siTéj(HaM +y0xw — pcosb;)) + HZ/@ cot 0;
J v J

EtﬂFj

+/ (—W-l— %Rz — %fp — %f[(?;,u — va)) ,

P

where we have used (2.12)) and (2.13)). Since W > 0,

(3.3) H | ¢;'<H —%/ (31 — ywy) +Z/ cot 0;
N N T JosinFy

Solving this ODE, we finish the proof. O

3.3. Proof of rigidity of frustum. Now we are ready to prove the dihedral
rigidity conjecture for frusta.

Proof of Theorem[I.10] for frusta. Using the existence and regularity theory in
[Li20a, Theorem 2.1], there exists a minimiser E to such that ¥ = int M NOE
is C* up to the corner (Li’s theorem is based on scaling argument, and u will
play no role in the limit.).

Given any X, we can define A as in (2.2). Let F(t) = A(X;) where X; is the
leaf of the foliation in Lemma Then by the first variation ([2.3)),

P%ﬂ=/<H+wrwN+mwﬂﬂ,
I

note that there is no boundary term because that the contact angle is 6; = 6;
along the edges. Using Lemma F'(t)y<Ofort>0and F'(t) 20fort <0
which means that every X, also gives rise to a minimiser to the functional. By
Lemma every %, is infinitesimal rigid. Now we calculate the metric of (€2, g)
and v using the infinitesimal rigidity. Moreover, by tracing back the equality, we
have that ¢; is constant. Using wy = —h/(4 — ) and H = —ywyn — h, we see
H = 2(y — 2)h/(4 — v) = —2a which is constant. We now show that Y= is
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conformal. First, Vs, N = H9;. Since (Y, N) is constant,
0=Vy(Y,N)
=(Vs,Y,N)+ (Y, Vy,N)
=Y (0;,N) = (VyN,0;) + H(Y, 0;)
= —(VyN,0;) + H(Y,0;).
Observe that
VyN=VyrN+Vy.N=HY ' +Vy.N, (Y,0;)=(YT,0,),

hence (Vy 1 N,8;) = 0. Moreover, Vy1(9;,0;) = (Y, N)g;; = %Hgbtg,-j by the
umbilicity |42 — 1 H? = 0. Note that every leaf is flat, therefore, the local foliation
forms a subset U;X; of the hyperbolic 3-space with constant curvature —|«a|. It
follows from wy = —h/(4 — ) that u = t=%/® (up to a constant). We now
calculate the second fundamental form of 9f2. Let e be a unit tangent vector of
0. Along the face F}, using the decomposition X; = cos ;N + sin§;v,

Ap,(e,e) = (VeX,e) = cosb;Ale, €) + sinbrps = 5 H cos ;.
It follows from Hgps + vOxw = —h cos éj that Hyg = H cos G_j, and hence
Ap;(m,m) = (VyX,n) = Hoq — (Ve X, €) = %HCOSQJ'.

Note that the vector N — (n, N)n is of length sin;, and the direction is the same
with X, so

Ap,(e,n) = (VeX,n) = G5 (Ve(N = (1, N)n),n) = 0.

Hence, every face F; is umbilic with curvature %H cos 0;. In the upper half-space
model of the hyperbolic 3-space, the face is either a part of a sphere or a plane.
That each face F; intersects the leaf X; in a constant angle indicates that it can
only be a part of a plane. Therefore, by connectedness, we can extend the rigidity
to all Q and (€2, g) is a polyhedron in the upper half-space model. O

4. RIGIDITY OF PYRAMIDS

In this section, we give the proof for rigidity of pyramids. Our method is to
construct a local foliation near the apex which serves as a barrier for the existence
of the minimisers to the warped p-bubble functional.

First, we construct a local foliation near the apex O.

Proposition 4.1. Let (Q2,g) and (,6) have isometric tangent cones at O. Then
there exists a neighborhood U of O foliated by a family of surfaces {¥:}ie(—c,0)
such that each Xt is of constant H+~ywn +h and meets the face F; at the constant
angle 0;.
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Remark 4.2. From now on, in some situations, we omit the dependence of 6 and
0 on the indices of the faces for brevity.

It is more useful to reformulate. The pyramid (€2, d) is formed by truncating its
tangent cone at the apex through the base. We let 31 be the cross-section parallel
to the base and of unit distance to the apex O and €27 to be the pyramid truncated
by 1. Let X3 = ¢X; and Q; = ¢Q4, ¢t > 0. Let x € Q;, we define v(z) = u(tz) and

(§")ij () = gij(tx).
We consider
S ={(&, —t+¢): (& -1) € X4},

Let every geometric quantity of 3; be denoted with a hat and a subscript ¢ with
respect to the metric g := g%, and let every geometric quantity on X; 4 be denoted
by a hat and a subscript ¢, ¢. For example, the unit normal of 37 in 2; with respect
to the metric § is given by Ny, and the unit normal of Y1,¢ is given by Nt,¢.

By rescaling back using Proposition we obtain the proof of Proposition
Indeed, let

S‘t@ = I—A[m; + ’yvilﬁm LUt th.

Proposition 4.3. There exists a family of functions {¢(-,t)}iep0,c) defined on
Y1 such that the perturbations ¥ ;4. has constant Ay i4(.+) and have constant
angles with F; with respect to the metric g.

Proof. Let s be a small parameter and the family ¥, ;4 give rise to a vector field
0s := (0,¢(z)). The perturbation ¥, 54 of ¥; is approximately a normal graph
over Y7 with the graph function ¢ satisfying

¢ = 5§(9s, Ny) + O(s%),
Setting s = t, then the graph function
¢ =to+O0(t)

since g converges to the flat metric.

By the first variation of \; ;4 and the Taylor expansion (with respect to s),
)\t,sqb - )\t,O = ESQZ) + 5<(6S)T7 V‘@t >\t70> + 0(52) = SIA/SQS + 5<(8S)Ta vgt>‘t,0>0(52)

by where L, is define for ¥ as ([2.6) with respect to the metric gt. Setting
s =t yields

Ao = Ao + 1L+ {(95) T, VI Ap o) + O(2).
By convergence of § to the flat metric and u converges to the flat metric, L, =
—Ags, + O(t) where Ay, is the Laplace-Beltrami operator with respect to the flat
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metric (i.e., limit of §) on 1, and {(95) ", VI A 0) = O(t). So
(4.1) Aiio = Ao — Ax, ¢+ O(t),
Similarly using ,
(4.2) cos B 1y = cos by g — tsin ét,o% + tGep + t{(05)7F1, VB, 0) + O(t2),
where §; is defined in for 3, with respect to the metric g*.

Since the (21, g*) converges to the flat pyramid and u converges to a constant,
Ly = —Ayx, + O(t) and similarly, sin 96%,5 = sin 98%1 + O(t) and ¢; = O(t).

Define
U(t,p) = 19\ ¢,——1 / 19\ & 7(005(9 ¢—cos€)
’ et 1] o, EhE 4 in g bt ’

which can be extended to ¢t = 0 by taking limits ¥ (0, ¢) = lim;_,o ¥ (¢, u). By the

expansion (4.1]) and (4.2)),
¥(0.0) = (~An,0+ [ Anio—F2+0),
1

cos 0y o—cos 0

— is a function on 9%;.
tsin 6

where (¢ := lim;_q
By minimising the functional
10)= [ 19s.0P+ [ co
21 z:1
on the space
Ao ={p€C**(Z1)NCH (%) : ¢ =0},
P

we can find a solution to the elliptic problem ¥(0, ¢) = 0, and we set the solution
to be ¢g.

Now we compute

D¥|(0,40)(0,0) =4-]s—0¥(0, g + s¢)

0
=i|s:os(—Azl¢+—‘§ﬂ/E As, 6, —2)
1

—(~An, b+ 'Tl‘/z As,6,-22),

since ¢¢ satisfies ¥(0, ¢p) = 0. Now we apply the implicit function theorem. For
some sufficiently small € > 0, there exists a function ¢(-,t) € B(0,6) C X, t € (0,¢)
such that ¢(-,0) = ¢ and

\Il(ta ¢(7t)) = \I/(O, ¢O) = (Ov O)
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for every t € [0,¢). In geometric terms, the surface ¥, 4. ;) are of constant Ay 4(. 4
with constant contact angles ; with the face F. O

Lemma 4.4. Let 3y ;4(.1) be constructed as in Proposition then

Ao X1] = At,0 + / ﬁ(cosé —cosf) + O(tQ).
Z1 621

Proof. This follows from (4.1), (4.2) by integration over ¥; and an application of
the divergence theorem. O

We give a variational formula which gives a relation of the variations of —yu™'Aju+
iR, H + yu~'dnu and the dihedral angles.

Proposition 4.5. Let {u;} be a family of positive C? functions and {g;} be a
family of smooth metrics on 1 converging respectively to the constant 1 and the
flat metric as t — 0. Then

[—/ (Hg +yu™ " Oyu) + / ~L5(cos 0 — cos 0)]
X o%

:/ (—'yu_lAgu + %Rg) —l—/ (Hy+ yutoxu) + O(t2).
o 901\,

Proof. The case u; is a constant for all ¢ is due to [MP22], so we only have to show

—/ u_laNu:/ u_lAgu—i—/ u”tox,u + O(t?).
o0, o AN\,

The above follows from that u=! = 1 + O(t) and the divergence theorem. g

By taking the difference between (u1,¢1) and (ug, g2), we obtain the following.

Corollary 4.6. Let {ugi)}i:m be two families of positive C? functions and {gﬁi)}izlg
be two families of smooth metrics on €1 converging respectively to the constant 1
and the flat metric ast — 0. Then

[7/2 ((Hyy +yutonu) — (Hy, +yu~tonu)) + /(m ﬁ(cos 0™ — cos )
:/Q (—yu'Agu+ iRy) — (—yu ' Agu+ 2Ry))

[ (H T o)~ (Hy o) + O(F)
891\21

Now we are ready to finish the proof of Theorem for pyramids.
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Proof of Theorem[I1.1(] for pyramids. Note that
Attg = Hi g + yu~tOnu + th,

where th is —(Hi ¢ +7u*181\/u) computed with respect to the model. Hence, Ay 1
is the difference of the weighted mean curvatures with respect to two different
metrics. Note that 6 is the same with the model. Hence subsequent applications of
Lemma and Corollary shows that A 14 > O(t?). Equivalently, by rescaling
back, we obtain that H, > O(t) for the foliation {;} in Proposition The
condition H, > O(t) gives an initial value for the ordinary differential inequality
(3-3) (with a reversed direction) which is easily seen to hold for {;} as well. We
write the ODE here

> 10,90 = (& [ Gheum =Y [ ([ o)

We see that ¢, = 1+0(t), 3, faszj cot §; = Ct+O(t?) for some constant C' > 0
(see Remark since the foliation in Proposition is constructed from higher
order perturbations of coordinate bases. Hence W(t) = Ct~! + C(t) where C(t)
is a bounded continuous function. Hence,

t
%(ﬂ'tc exp(/ Ci(s)ds)) =0
and we obtain that H > 0 for every leaf. This gives a barrier for the existence of
minimiser to the capillary warped p-functional for the polyhedron Q\E; obtained
by chopping off the pyramid over 3;. Applying the proof for the rigidity of frus-
tums, we know that the rigidity holds Q\E;, which by taking a limit ¢ — 0, we
obtain the rigidity for the pyramids. O

Remark 4.7. We ezplain why 3, faszj cotf; = Ct + O(t?) holds. It suffices

to consider the flat metric and t = 1 by rescaling. Let O’ be the projection of O to
the plane where X1 lies and E; = F; N 0X1. We see then that cot 0; is the signed
distance of O’ to the line where E; lies formed by E;. So |03, N Fj|cot 0; is twice
the area of an oriented triangle formed by O’ and Ej, and summing over all F
gives twice the area of 31, that is, the constant C.
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