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Abstract. We develop a mass type invariant asymptotically flat initial data

sets with a non-compact boundary. We show a corresponding spacetime posi-

tive mass theorem for spin initial data sets under the dominant energy condi-
tion and a suitable dominant energy condition on the boundary which we call

the tilted dominant energy condition.

1. Introduction

The positive mass theorem states that if a complete manifold which is asymp-
totically flat and with non-negative scalar curvature, an quantity called the ADM
mass defined at infinity is non-negative. It was proved by Schoen and Yau in their
seminal work [SY79] using a minimal surface technique. The ADM mass is a char-
acterization of scalar curvature at infinity. There are various works on the positive
mass theorem: [Wit81], [EHLS16], [ACG08], [Wan01], [CH03], [Sak21]. Here the
list is by no means exhaustive.

The study of the positive mass type theorems of the asymptotically flat manifold
with a non-compact boundary was initiated in the work [ABdL16]. The effect of
the mean curvature was included to the infinity and a boundary term was added to
the ADM mass. See [AdL20], [AdLM19], [Cha18], [Cha21] and [AdL22] for some
developments to the spacetime and the hyperbolic settings.

Almaraz-de Lima-Mari [AdLM19] introduced the asymptotically flat initial data
sets and prove a version of the spacetime positive mass theorem. In this paper,
we revisit the asymptotically flat initial data set with a non-compact boundary. In
particular, we introduce a new boundary dominant condition (1.2) and prove the
spacetime positive mass theorem (Theorems 1.4) for spin initial data sets.

1.1. Asymptotically flat initial data sets with a non-compact boundary.
An initial data set (Mn, g, p) is an n-dimensional manifold which arises as a space-
like hypersurface of a Lorentzian manifold (Sn,1, g̃) with p being the second funda-
mental form. The components T00 and T0i of the Einstein tensor (or the energy-
momentum tensor) T are respectively called the energy density µ and the current
density J . Let e0 be the future directed unit normal of M to S, ei be an or-
thonormal basis of the tangent space of M and we use the convention on p that
pij = g̃(∇̃eie0, ej).

The energy density µ by the Gauss equation is

2µ = Rg + (trg p)
2 − |p|2g
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and the current density J by the Gauss-Codazzi equation is

J = div p− gd(trg p).

Definition 1.1. We say that (M, g, p) satisfies the interior dominant energy con-
dition if

(1.1) µ ⩾ |J |.
If ∂M ̸= ∅, let η be the outward normal of ∂M in M , H∂M = div∂M η. We say that
(M, g, p) satisfies the tilted boundary dominant energy condition on the boundary
∂M if

(1.2) H∂M + cos θ tr∂M p ⩾ sin θ|p(η, ·)⊤| on ∂M,

where θ ∈ [0, π] is a constant angle parameter and p(η, ·)⊤ denotes the component
of the 1-form p(η, ·) tangential to ∂M .

The tilted boundary dominant energy condition (1.2) generalizes the tangential
(θ = π

2 ) and normal boundary dominant energy conditions (θ = 0) in [AdLM19].
Now we recall the definition of an asymptotically flat initial data set with a non-
compact boundary and its ADM energy and linear momentum of [AdLM19].

Definition 1.2. We say that an initial data set (M, g, p) is asymptotically flat with
a non-compact boundary if there exists a compact set K such that M is diffeomor-
phic to Rn+\B (the Euclidean half-space minus a ball) and

(1.3) |g − δ|+ |x||∂g|+ |x|2|∂2g|+ |x||p|+ |x|2|∂p| = o(r−
n−2
2 ),

where B is the standard Euclidean ball of a fixed radius.

Definition 1.3. Assume that µ + |J | ∈ L1(M) and H∂M + |p(η, ·)⊤| ∈ L1(∂M),
then the quantities defined as

E = lim
r→∞

[∫
Sn−1,r
+

(gij,j − gjj,i)ν
i −
∫
Sn−2,r

eαnϑ
α

]
,

and

Pi = 2

∫
Sn−1,r
+

πijν
j .

are finite and are respectively called the ADM energy and ADM linear momentum.
Here, ν is unit normal to Sn−1,r

+ , ϑ is normal to Sn−2,r in ∂M and π = p− g trg p.
Denote P̂ = (P1, . . . , Pn−1), S

n−1,r
+ is the upper half of the coordinate sphere of

radius r and Sn−2,r = ∂Sn−1,r
+ .

Note that we have included Pn in the ADM linear-momentum as well, and this
is a key difference from [AdLM19, Definition 2.4].

1.2. Tilted positive mass theorem. We use the spinorial argument of Witten
[Wit81] (see also [PT82]). We have the following two spacetime positive mass
theorems.

Theorem 1.4. If (M, g) is spin and (M, g, p) satisfies the interior dominant energy
condition (1.1) and the tilted boundary dominant energy condition (1.2) for some
nonzero θ ∈ [0, π], then

(1.4) E + cos θPn ⩾ sin θ|P̂ |.
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The special case θ = π
2 of the theorem is due to [AdLM19]. As we shall see later,

(1.4) is related to an energy-momentum vector (2.1). Throughout this paper, we
assume that θ ∈ (0, π), and the case θ = 0, π only requires minor modifications.

The time-symmetric case p = 0 of the theorem first appeared in [ABdL16] where
a minimal surface proof was also given. Here is the rough idea in dimension 3.
Assume that the energy (mass) E is negative, we can perturb the metric so that it
is harmonically flat at infinity, the scalar curvature and the mean curvature of the
boundary are strictly positive. Then the boundary ∂M and a plane asymptotically
parallel to ∂M serve as the barriers and we can find an area-minimizing minimal
surface which is asymptotic to a coordinate plane that lies in between. Then the
Gauss-Bonnet theorem applied on the stable minimal plane contradicts the strict
positivity of the scalar curvature and the mean curvature. An alternative proof was
given by the author [Cha18], where the free boundary minimal surface was used
instead. Assume that E < 0, we can construct a free boundary area-minimizing
surface that lies in between two coordinate half-planes. The existence of such a free
boundary minimal surface again contradicts the Gauss-Bonnet theorem.

Observing the two works and [EHLS16], the two proofs are actually for the two
special cases when p vanishes: (I) θ = π/2 in [Cha18]; (II) or θ = 0, π in [ABdL16].
It is then reasonable to expect a proof of the more general Theorem 1.4 using the
capillary marginally outer trapped surface, see [ALY20]. While it is a possible
approach to Theorem 1.4, the construction of capillary MOTS remains a technical
problem.

Definition 1.5. Let Σ be a hypersurface in the initial data set (M, g, k), the quan-
tity θ+ = HΣ + trΣ p (θ− = HΣ − trΣ p) is called outer (inner) null expansion.
If θ+ = 0 (θ− = 0) along Σ, then Σ is called a marginally outer (inner) trapped
hypersurface, in short MOTS (MITS). If Σ ∩ ∂M is nonempty, Σ and ∂M forms
a constant contact angle θ, then we say Σ is a capillary MOTS.

We also need the capillary MOTS in the rigidity case of Theorem 1.4.

1.3. Rigidity. The rigidity of the positive mass theorem was recently studied in
many works, for example, [HL23, HL20, HL23, HL24, HZ24]. It was found that
initial data sets of zero mass do not necessarily isometrically embeds into the
Minkowski time, see [BC96, HL24]. We call an initial data set with zero mass a
rigid initial data sets. In general, the rigid initial data sets lies within the so-called
plane-fronted waves with parallel propagation or in short pp-wave spacetime.

Definition 1.6. We say a manifold Sn,1 with a metric g̃ of Lorentzian signature
is a pp-wave spacetime if Sn,1 = Rn+1 and

g̃ = −2dudt+ Fdu2 + δRn−1 ,

where F is independent of t and superharmonic on Rn−1 × {u} for all u ∈ R.

A rough version of the equality case of Theorem 1.4 is given in the following.
For a precise statement, see Theorem 5.21.

Theorem 1.7. If the equality

E + cos θPn = sin θ|P̂ |
is achieved in (1.4) of Theorem 1.4, then (M, g, p) is foliated by flat capillary MOTS.
Moreover, it admits an isometric embedding into a pp-wave spacetime with the
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second fundamental form p, in particular, (M, g, p) isometrically embeds into the
half Minkowski spacetime if E + cos θPn = 0.

This theorem can be seen as a boundary analog of Hirsch-Zhang [HZ24]. Our
approach combines an observation similar to [HZ24] that the equality in the Wit-
ten’s spinor proof [Wit81] is achieved by a set of spinors and a paper of the author
with Wan [CW24] on the dihedral rigidity of initial data sets.

We use the spinor spacetime spinor bundle in the proof, however, it is not nec-
essary in even dimensions. Because the Clifford multiplication by the timelike unit
vector e0 can be replaced by the Clifford multiplication of the complex volume
element in the modified connection (3.1) on the spacetime spinor bundle and the
chirality operator (3.3) when the dimension is even. See [AdL22] where the oper-
ator (3.3) was originally introduced. It is an interesting question to find a proof
without using the spacetime spinor bundle in odd dimensions. This is possible in
the usual case of spacetime positive mass theorem, the case by [HZ24], since there
is no boundary involved. We just replace the connection in (3.1) by

∇i +
1
2 (−1)σ

√
−1pijej ·,

and proceed similarly using the techniques in Section 5.

The article is organized as follows:
In Section 2, we describe the mass related Theorems 1.4 and show the invariance.

In Section 3, we collect basics of the chirality operator (3.3) and the hypersurface
Dirac operator including the most important Schrodinger-Lichnerowicz formula. In
Section 4, we give the proofs of Theorems 1.4. In Section 5, we give the proofs of
the rigidity statement Theorem 1.7.
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2. The invariance of mass

In this section, we introduce the energy-momentum vector (Eθ, P θi ) in (2.1) based
on the Hamiltonian analysis in [HH96] and point out that the tilted dominant energy
condition (1.2) appears in selecting a suitable lapse function and the shift vector.

2.1. Hamiltonian formulation and mass invariance. Assume at present that
M is compact, we infinitesimally deform the initial data set (M, g, p) in Sn,1 in the
direction of a future directed timelike vector field T . Let ϕs be the local flow of T ,
Ms = ϕs(M). We assume that the unit normal e0 toMs is always tangential to the
timelike hypersurface foliated by ∂Ms. Let T = Ne0 + X, where N is called the
lapse function and the vector field X tangent to M is called the shift vector, then
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the Hamiltonian along M is given by (see [HH96])

H(N,X) =

∫
M

[Nµ+ 2J(X)] + 2

∫
∂M

[NH − p(X, η) + trg p⟨X, η⟩].

The tilted boundary dominant energy condition (1.2) now comes from selecting
N = 1 and X = cos θη + sin θτ where τ is tangent to ∂M in the boundary term of
the Hamiltonian. Indeed,

NH − p(X, η) + trg p⟨X, η⟩
=H − cos θp(η, η)− sin θp(τ, η) + cos θ trg p

=H + cos θ tr∂M p− sin θp(τ, η),

which is non-negative if (1.2) holds.
Now let (M, g, p) be the background (Rn+, δ, 0), we take N to be a constant and X

be a translational Killing vector field of Rn+. We consider the HamiltonianHε(N,X)
on (M, δ + εg, εp) with (g, p) satisfying (1.3). We do the Taylor expansion of Hε

with respect to ε, due to the fact that M is non-compact, usually the first order
terms do not vanish. These terms evaluated at infinity are precisely those given in
Definition 1.3. For a more complete account of these facts, we refer the readers to
[HH96], [Mic11] and [AdLM19].

We define the charge density U which is a 1-form,

U(g,k)(N,X)

=N(divδ g − d(trδ g))− (g − δ)(∇δN, ·)
+ trδ(g − δ)dN + 2(p(X, ·)− trδ p⟨·, X⟩δ).

Let T be the space of translational Killing vector fields of Minkowski spacetime
denoted by R1,n. It is easy to see that T is identified with R ⊕W with R factor
representing the translation in a chosen timelike direction ∂0 andW being the linear
space spanned by all translational Killing vector fields of (Rn, δ) orthogonal to ∂0.
Each T ∈ T can be uniquely written in the form T = N∂0 + Xi∂i where N ∈ R
and Xi ∈ R. We define the energy-momentum functional as follows:

M(T ) = lim
r→∞

[∫
Sn−1,r
+

U(g,k)(N,X) +

∫
Sn−2,r

Ng(η̄, ϑ̄)

]
.

It was shown in [AdLM19, Proposition 3.3] that the energy-momentum functional
M(T ) does not depend on the asymptotic coordinates (fixing ∂0) chosen at infinity.

For any θ ∈ (0, π), we define

(2.1) Eθ = M( 1
sin θ∂0 +

cos θ
sin θ ∂n), P

θ
i = M(∂i) for any i ̸= n.

It is easy to check that E = M(∂0), Pi = M(∂i) where (E,P ) is as defined in
Definition 1.3, so Eθ = 1

sin θE + cos θ
sin θPn. We have the following.

Theorem 2.1. Given any asymptotically flat initial data set (M, g, k), for any
θ ∈ (0, π), the vector (Eθ, P θ) ∈ R1,n−1 is well defined (up to composition with an
element of SO1,n−1). In particular,

−(Eθ)2 +
∑
i ̸=n

(P θi )
2

and the causal character (Eθ, P θ) ∈ R1,n−1 do not depend on the chart at infinity
to compute (Eθ, P θ).
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Proof. Let ∂̃0 = 1
sin θ (∂0 + cos θ∂n), ∂̃n = 1

sin θ (cos θ∂0 + ∂n) and ∂̃i = ∂i. There is

a Lorentz boost from (∂0, ∂1, . . . , ∂n) to (∂̃0, ∂̃1, . . . , ∂̃n) such that(
∂̃0
∂̃n

)
=

(
cosh ρ sinh ρ
sinh ρ cosh ρ

)(
∂0
∂n

)
,

on the plane spanned by {∂0, ∂n} with ρ defined by cosh ρ = 1
sin θ . So (∂̃0, ∂̃1, . . . , ∂̃n)

gives a new coordinate system for the Minkowski spacetime R1,n. Let (x̃0, x̃1, . . . , x̃n) ∈
R1,n where x̃ is expressed in the new coordinates. Obviously,

−(x̃0)
2 +

∑
i ̸=n

(x̃n)
2

is invariant under linear Lorentz transformations of R1,n which fixes ∂̃n. These
transformations as a subgroup of the special Lorentz group SO1,n is isomorphic to
SO1,n−1. The discussion applies to

(M(∂̃0),M(∂̃1), . . . ,M(∂̃n−1),M(∂̃n)),

and this is our theorem. □

For the cases θ = 0, π, it is simpler.

Theorem 2.2. Given any asymptotically flat initial data set (M, g, k), the quantity
E ± Pn is a numerical invariant under isometries of Rn+ which includes rotations
and translations of the (n− 1)-dimensional hyperplane ∂Rn+.

Proof. Note that E and Pn are invariant under rotations and translations of the
hyperplane {∂1, . . . , ∂n−1}, see [AdLM19, Proposition 3.3]. □

3. Hypersurface Dirac operator

In this section, we recall the hypersurface Dirac spinors and the related Schrodinger-
Lichnerowicz formula (3.2). We review the chirality operator (3.3) and we relate
the boundary condition (3.4) to the geometric quantities along the boundary ∂M
in Lemma 3.5.

3.1. Hypersurface Dirac operator. The standard reference of spin geometry is
[LM89], we also refer to [PT82], [HZ03]. Denote by S the local spinor bundle of
Sn,1, since M is spin, S exists globally over M . This spinor bundle S is called the
hypersurface spinor bundle of M . When our spacetime S is of dimension 3 + 1,
the local spinor bundle S have a simpler algebraic description by the representation
theory of the special linear group SL(2,C). In this case, the theory is easier to
understand, see [PT82, Section 2].

Let ∇̃ and ∇ denote respectively the Levi-Civita connections of g̃ and g, we
use the same symbols to denote the lifts of the connections to the hypersurface
spinor bundle. There exists a Hermitian inner product (·, ·) on S over M which is

compatible with the spin connection ∇̃. For any vector e of S and the hypersurface
spinors ϕ, ψ, we have

(e · ϕ, ψ) = (ϕ, e · ψ)
where the dot · denotes the Clifford multiplication. This inner product is not
positive definite. However, there exists on S over M a positive definite Hermitian
inner product defined by

⟨ϕ, ψ⟩ = (e0 · ϕ, ψ)
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where e0 is the future-directed unit timelike normal to M . We see that

⟨e0 · ϕ, ψ⟩ = ⟨ϕ, e0 · ψ⟩, ⟨ei · ϕ, ψ⟩ = −⟨ϕ, ei · ψ⟩,

where {ei} is an orthonormal basis over M . Then the spinor connection ∇̃ over S
is related to ∇ by

∇̃i = ∇i − 1
2pijej · e0 · .

This is essentially the spinorial Gauss equation. Moreover, the connection ∇ is
compatible with ⟨·, ·⟩ and ∇i(e0 · ϕ) = e0 · ∇iϕ.

For our purpose, we extend ∇̃ to ∇̃(σ) defined by

(3.1) ∇̃(σ)
i ϕ = ∇iϕ+ 1

2 (−1)σpijej · e0 · ϕ,
where σ is an integer. The hypersurface Dirac (or Dirac-Witten) operator is then
given by

D̃(σ) = ei · ∇̃(σ)
i = D − 1

2 (−1)σ trg pe0·,

where D is the standard Dirac operator. We also call a spinor ϕ satisfying D̃ϕ = 0
a (spacetime) harmonic spinor.

From here after, ∇̃ and D̃ will be referring to ∇̃(σ) and D̃(σ). When there is a
possible confusion, we will indicate the supscripts explicitly.

The integration form of the Schrodinger-Lichnerowicz formula (see [PT82]) is
given as follows.

Theorem 3.1. Let Ω be a compact manifold with boundary, we have for any smooth
spinor ϕ that ∫

Ω

|D̃ϕ|2 −
∫
Ω

|∇̃ϕ|2 +
∫
∂Ω

[⟨ν · D̃ϕ, ϕ⟩+ ⟨ϕ, ∇̃νϕ⟩]

= 1
2

∫
Ω

⟨(µ+ (−1)σJ · e0·)ϕ, ϕ⟩,(3.2)

where ν is the outward unit normal of ∂Ω.

3.2. Boundary chirality operator. We fix the conventions first. We use the
Greek letters α, β, γ to indicate the indices which are not n in the rest of the
paper. The vector en is used to denote the outer normal of ∂M in M and h
denotes the the second fundamental form of ∂M given by hαβ = ⟨∇eαen, eβ⟩, then
H∂M =

∑
α hαα.

The following chirality operator was introduced by [AdL22, Definition 3.3] where
e0 is replaced by the Clifford multiplication of the complex volume element.

Definition 3.2. Given an integer σ1, define Q
(σ1) by

(3.3) Q(σ1)ϕ = cos θen · e0 · ϕ+ (−1)σ1
√
−1 sin θen · ϕ.

When there is no confusion, we write Q = Q(σ1) and we also use the convention
Q · ϕ = Qϕ.

We collect the commutative and anti-commutative properties of Q below.

Lemma 3.3. The operator Q satisfies the following

(a) Q ◦Q = 1 and Q is self-adjoint;
(b) en ·Q+Q · en = −2(−1)σ1

√
−1 sin θ;

(c) eα · eβ · en ·Q+Q · eα · eβ · en· = −(−1)σ12
√
−1 sin θeα · eβ ·;
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(d) e0 ·Q+Q · e0 = 0;
(e) eα · eβ · e0 ·Q+Qeα · eβ · e0· = 0;

(f) eα ·Qϕ−Q · eα = 2(−1)σ1
√
−1 sin θeα · en;

(g) eα ·Qϕ+Q · eα = 2 cos θeα · en · e0;
(h) eα · en ·Q+Q · eα · en = 0;
(i) en · e0 ·Q+Q · en · e0 = 2 cos θ;
(j) eα · eβ · en · e0 ·Q+Q · eα · eβ · en · e0 = 2 cos θeα · eβ;
(k) eα · e0 ·Q+Qeα · e0 = 2(−1)σ1

√
−1 sin θeα · e0 · en;

(l) for α ̸= β, eα · eβ ·Q = Qeα · eβ ·;
(m) eα · en · e0 ·Q = Q · eα · en · e0.

Proof. All the items follows from direct calculation starting from the definition of Q
in (3.3). As an example, we only show the last item. By (3.3) and anti-commutative
property of the Clifford multiplication,

eα · en · e0 ·Q = cos θeα · en · e0 · en · e0 + (−1)σ1
√
−1 sin θeα · en · e0 · en

= cos θeα + (−1)σ1
√
−1 sin θeα · e0,

Q · eα · en · e0· = cos θe0 · en · eα · en · e0 + (−1)σ1
√
−1 sin θen · eα · en · e0

= cos θeα + (−1)σ1
√
−1 sin θeα · e0.

So the last item holds. □

3.3. Boundary terms in Schrodinger-Lichnerowicz formula. We calculate
the term ⟨ν · D̃ϕ, ϕ⟩+ ⟨ϕ, ∇̃νϕ⟩ along ∂M when

(3.4) Qϕ = (−1)σ2ϕ,

where σ2 is an integer. First, we compute a few inner products of spinors satisfying
(3.4).

Lemma 3.4. If a spinor ϕ satisfies (3.4) along ∂M , then

⟨
√
−1en · ϕ, ϕ⟩ = (−1)σ1+σ2 sin θ|ϕ|2,(3.5)

⟨en · e0 · ϕ, ϕ⟩ = (−1)σ2 cos θ|ϕ|2,(3.6)

⟨eα · e0 · ϕ, ϕ⟩ = (−1)σ1+σ2 sin θ⟨
√
−1eα · e0 · en · ϕ, ϕ⟩.(3.7)

Proof. The first term (3.5) already appeared in [AdL22, Proposition 3.11]. From
Lemma 3.3, we have

⟨
√
−1en ·Qϕ, ϕ⟩+ ⟨Q ·

√
−1en · ϕ, ϕ⟩ = 2(−1)σ1 sin θ|ϕ|2.

Since Q is self-adjoint, so

⟨
√
−1en ·Qϕ, ϕ⟩+ ⟨

√
−1en · ϕ,Qϕ⟩ = 2(−1)σ1 sin θ|ϕ|2.

Because Qϕ = (−1)σ2ϕ, we have

2⟨
√
−1en · ϕ, ϕ⟩ = 2(−1)σ1+σ2 sin θ|ϕ|2,

which is the first item. The rest follow similarly from corresponding relations from
Lemma 3.3. □

The following lemma relates the boundary term in the integration form of Schrodinger-
Lichnerowicz formula (3.2) with the mean curvature H, tr∂M p, pnj along the
boundary, and in particular, the tilted boundary dominant energy condition (1.2).
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Lemma 3.5. If a spinor ϕ satisfies (3.4) along ∂M , then

⟨∇̃enϕ+ en · D̃ϕ, ϕ⟩

=⟨D∂Mϕ, ϕ⟩ − 1
2H∂M |ϕ|2 − 1

2 (−1)σ+σ2 cos θ tr∂M p|ϕ|2

+ 1
2 (−1)σ+σ1+σ2 sin θ⟨

√
−1pnγeγ · e0 · en · ϕ, ϕ⟩.

Proof. Let D∂M be the boundary Dirac operatoror defined by

D∂M = en · eα · ∇∂M
α .

Here, ∇∂M is the spin connection intrinsic to ∂M explicitly defined on spinor fields
on M restricted to ∂M as

∇∂M
α = ∇α − 1

2hαβen · eβ · .

We calculate D∂Mϕ with ϕ satisfying (3.4) and

D∂Mϕ

=en · eα · (∇αϕ− 1
2hαβen · eβ · ϕ)

=en · (Dϕ− en · ∇enϕ) +
1
2H∂Mϕ

=en ·Dϕ+∇enϕ+ 1
2H∂Mϕ

=en ·
(
D̃ϕ+ 1

2 (−1)σ trg pe0 · ϕ
)
+
(
∇̃enϕ− 1

2 (−1)σpnjej · e0 · ϕ
)
+ 1

2H∂Mϕ

So

⟨∇̃enϕ+ en · D̃ϕ, ϕ⟩

=⟨D∂Mϕ, ϕ⟩ − 1
2 (−1)σ⟨trg pen · e0 · ϕ− pnjej · e0 · ϕ, ϕ⟩ − 1

2H∂M |ϕ|2.

It remains to calculate

⟨trg pen · e0 · ϕ− pnjej · e0 · ϕ, ϕ⟩
=⟨(tr∂M pen + pnnen) · e0 · ϕ− (pnαeα + pnnen) · e0 · ϕ, ϕ⟩
=tr∂M p⟨en · e0 · ϕ, ϕ⟩ − ⟨pnαeα · e0 · ϕ, ϕ⟩
=(−1)σ2 cos θ tr∂M p|ϕ|2 + (−1)σ1+σ2+1⟨pnαeα · e0 · ϕ, ϕ⟩

=(−1)σ2 cos θ tr∂M p|ϕ|2 + (−1)σ1+σ2+1 sin θ⟨
√
−1pnαeα · e0 · en · ϕ, ϕ⟩,

which follows from (3.6) and (3.7). □

4. the positive mass theorem

In this section, we prove the tilted spacetime positive mass theorem (Theorems
1.4).

4.1. Existence of a spacetime harmonic spinor. When the initial data set
(M, g, p) is flat and totally geodesic, i.e. (M, g, p) is (Rn+, δ, 0), we define

Q̄ϕ := Q̄(σ1)ϕ = cos θ ∂
∂xn · ∂

∂x0 · ϕ+ (−1)σ1
√
−1 sin θ ∂

∂xn · ϕ.

Note that Q̄2 = I, and the eigenvalues of Q̄ are ±1. The standard hypersurface
spinor bundle S̄ over (Rn+, δ, 0) splits into two eigen subbundles and the spinor ϕ
satisfying

(4.1) Q̄ϕ = (−1)σ2ϕ
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is closely related to our problem. Here σ1 and σ2 are the two integers defined earlier
in (3.3) and (3.4).

We recall the following existence of a spacetime harmonic spinor ϕ which is
asymptotic to a constant spinor ϕ0 satisfying (4.1), and we extract the mass from
the boundary integral in (3.2). By [AdLM19, Proposition 5.3] and the discussions
that followed, we have the following.

Theorem 4.1. Assume that (M, g, k) satisfies the dominant energy conditions (1.1)
and (1.2), and let σ = σ2. Given any nonzero constant spinor ϕ0 satisfying (4.1),
there exists a spinor ϕ which is asymptotic to ϕ0 and satisfies

D̃ϕ = 0 in M,

Qϕ = (−1)σϕ on ∂M.

4.2. Proof of positive mass theorems. Using the ϕ of Theorem 4.1 in (3.2), we
can give a proof of Theorem 1.2.

Proof of Theorem 1.4. LetMr be the compact region bounded by ∂M and Sn−1,+
r .

By the integral form of Schrodinger-Lichnerowicz formula (3.2), we have for any
spinor ϕ, we have∫

Mr

|D̃ϕ|2 −
∫
Mr

|∇̃ϕ|2 +
∫
∂Mr

[⟨ei · D̃ϕ, ϕ⟩+ ⟨ϕ, ∇̃iϕ⟩] ∗ ei

= 1
2

∫
Mr

⟨(µ+ (−1)σJ · e0·)ϕ, ϕ⟩.

Note that ∂Mr are made of two portions: one lies in the interior of M and the
other lies on ∂M . Note that Qϕ = (−1)σϕ along ∂M , so by Lemma 3.5,∫

Mr

|D̃ϕ|2 −
∫
Mr

|∇̃ϕ|2 +
∫
∂Mr∩intM

[⟨ν · D̃ϕ, ϕ⟩+ ⟨ϕ, ∇̃νϕ⟩]

+

∫
∂Mr∩∂M

[
⟨D∂Mϕ, ϕ⟩ − 1

2H|ϕ|2 − 1
2 cos θ tr∂M p|ϕ|2

]
+ 1

2 (−1)σ1

∫
∂Mr∩∂M

sin θ⟨
√
−1pnγeγ · en · e0 · ϕ, ϕ⟩

= 1
2

∫
Mr

⟨(µ+ (−1)σJ · e0·)ϕ, ϕ⟩.

It follows that ⟨D∂Mϕ, ϕ⟩ = 0 from [CH03, (4.27)] (with ε there replaced by Q).
We claim that∫

∂Mr∩intM

[⟨ν · D̃ϕ, ϕ⟩+ ⟨ϕ, ∇̃νϕ⟩]

→ 1
4 (E + cos θPn)|ϕ0|2δ + sin θ(−1)σ1Pγ⟨

√
−1 ∂

∂xγ · ∂
∂xn · ∂

∂x0 · ϕ0, ϕ0⟩δ
as r → ∞ to finish the proof. Indeed, we proceed by calculation. First,

⟨ν · D̃ϕ, ϕ⟩+ ⟨ϕ, ∇̃νϕ⟩
=⟨ν ·Dϕ, ϕ⟩+ ⟨ϕ,∇νϕ⟩

+ 1
2 (−1)σ(pijν

j − trg pν
i)⟨ei · e0 · ϕ, ϕ⟩

=⟨ν ·Dϕ, ϕ⟩+ ⟨ϕ,∇νϕ⟩+ 1
2 (−1)σπijν

j⟨ei · e0 · ϕ, ϕ⟩,
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where ν is the unit normal of ∂Mr ∩ intM pointing to the infinity. Because that
ϕ converges to a constant spinor ϕ0 and ⟨ei · e0 · ϕ, ϕ⟩ converges to the constant
⟨ ∂
∂xi · ∂

∂x0 · ϕ0, ϕ0⟩δ, so as r → ∞∫
∂Mr∩intM

⟨ν ·Dϕ, ϕ⟩+ ⟨ϕ,∇νϕ⟩ → 1
4E|ϕ0|2δ

from [ABdL16, Section 5.2] and

1
2

∫
∂Mr∩intM

πijν
j⟨ei · e0 · ϕ, ϕ⟩ → 1

4Pi
〈
∂
∂xi · ∂

∂x0 · ϕ0, ϕ0
〉
δ
.

Here δ is the standard Euclidean metric. It follows from (3.6) that

Pn
〈

∂
∂xn · ∂

∂x0 · ϕ0, ϕ0
〉
δ
= (−1)σPn cos θ|ϕ0|2δ ,

and from (3.7) that

sin θPγ
〈
∂
∂xγ · ∂

∂x0 · ϕ0, ϕ0
〉
δ
= (−1)σ1+σ sin θPn

〈√
−1 ∂

∂xγ · ∂
∂xn · ∂

∂x0 · ϕ0, ϕ0
〉
δ
.

Up to here, we finish the proof of the claim. Now, given the above considerations,
as r → ∞,

1
4 (E + cos θPn)|ϕ0|2δ + sin θ(−1)σ1Pγ

〈√
−1 ∂

∂xγ · ∂
∂xn · ∂

∂x0 · ϕ0, ϕ0
〉
δ

=

∫
M

|∇̃ϕ|2 + 1
2

∫
M

⟨(µ+ (−1)σJ · e0·)ϕ, ϕ⟩

+ 1
2

∫
∂M

[
(H + cos θ tr∂M p)|ϕ|2 + sin θ(−1)σ1

〈√
−1pnγeγ · en · e0 · ϕ, ϕ

〉]
.(4.2)

Let
A = Pγ

√
−1 ∂

∂xγ · ∂
∂xn · ∂

∂x0 ,

we know from the last item of Lemma 3.3 that Q̄ commutes with A and they have
the same eigen-spinors. It is not difficult to see that eigenvalues of A are ±|P̂ |. For
a fixed σ1, we make a choice of ϕ0 and σ such that

(4.3) Pγ
〈√

−1 ∂
∂xγ · ∂

∂xn · ∂
∂x0 · ϕ0, ϕ0

〉
= (−1)σ1+1|P̂ ||ϕ0|2,

which by the dominant energy conditions (1.1) and (1.2), leads immediately to the

mass inequality E + cos θPn ⩾ sin θ|P̂ |. □

5. Analysis of the rigidity

Our main assumption of this section is vanishing mass, that is,

(5.1) E + cos θPn = sin θ|P̂ |.

5.1. Analysis of spinors. Let ϕ0 be a spinor satisfying (4.3) and ϕ is given in
Theorem 4.1. Assume in addition (5.1) holds, then it is easy to see from (4.2) that

(5.2) ∇̃(σ)
i ϕ = ∇iϕ+ 1

2 (−1)σpijej · e0 · ϕ = 0

And ϕ is also subject to the boundary condition

(5.3) Q(σ)ϕ = κen · e0 · ϕ+ (−1)σ1τ
√
−1en · ϕ = (−1)σϕ along ∂M.

Hereafter, we set κ = cos θ and τ = sin θ for convenience. We fix x1 direction so
that ∂

∂x1 = P̂ |P̂ |−1 if P̂ ̸= 0. If P̂ = 0, then we take any direction orthogonal to xn
direction to be x1.

We are going to use the following lemma quite often.
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Lemma 5.1. Let ϕ be a non-zero spinor and E1 be a unit vector with

⟨
√
−1E1 · ∂0 · ∂n · ϕ, ϕ⟩ = max

|E|=1
⟨
√
−1E · ∂0 · ∂n · ϕ, ϕ⟩.

Then

⟨
√
−1E2 · ∂0 · ∂n · ϕ, ϕ⟩ = 0

where E2 is any vector orthogonal to E1. If ⟨
√
−1E1 · ∂0 · ∂n · ϕ, ϕ⟩ = |ϕ|2, then

√
−1E1 · ∂0 · ∂n · ϕ = ϕ.

Proof. It is always true that

⟨
√
−1E1 · ∂0 · ∂n · ϕ, ϕ⟩ ⩽ |ϕ|2.

And the equality is achieved if and only if
√
−1E1·∂0·∂n·ϕ = ϕ. Let E(t), t ∈ (−ε, ε)

be a short smooth curve such that |E(t)| = 1, E(0) = E1 and E′(0) = E2. The
function f(t) := ⟨

√
−1E · ∂0 · ∂n · ϕ, ϕ⟩ attains its maximum at t = 0 by the

assumptions. Hence,

f ′(0) = ⟨
√
−1E′(0) · ∂0 · ∂n · ϕ, ϕ⟩ = ⟨

√
−1E2 · ∂0 · ∂n · ϕ, ϕ⟩ = 0,

which finishes the proof. □

Remark 5.2. Lemma 5.1 holds for other vector-related operators on spinors, and
we will refer to Lemma 5.1 when it applies.

Lemma 5.3. Assume that ϕ is a spinor which is asymptotic to the constant spinor
ϕ0 of unit length which satisfies (5.2) and (5.3). Assume in addition

(5.4)
√
−1∂1 · ∂0 · ∂n · ϕ0 = (−1)σ1+1ϕ0.

Let f = ⟨ϕ, ϕ⟩ and Wi = ⟨ei · e0 · ϕ, ϕ⟩, then f = |W |.

Proof. By a direct calculation,

(5.5) ∇if = −(−1)σpijWj , ∇iWj = −(−1)σpijf.

It follows then ∇i(f
2 − |W |2) = 0. Hence f2 − |W |2 is a constant. We choose an

orthonormal frame {ei} on the boundary ∂M such that e1 is asymptotic to ∂
∂x1 ,

and calculate the components of W . First, we calculate Wn along the boundary,

Wn = ⟨en · e0 · ϕ, ϕ⟩
= 1

2 (−1)σ⟨en · e0 ·Q · ϕ, ϕ⟩+ 1
2 (−1)σ(en · e0 · ϕ,Q · ϕ)

= κ(−1)σ|ϕ|2.

So Wn tends to κ(−1)σ as |x| → ∞. For Wα,

Wα =⟨eα · e0 · ϕ, ϕ⟩
= 1

2 (−1)σ⟨eα · e0 ·Q · ϕ, ϕ⟩+ 1
2 (−1)σ(eα · e0 · ϕ,Q · ϕ)

=(−1)σ+σ1τ⟨
√
−1eα · e0 · en · ϕ, ϕ⟩.

By (5.4), W1 tends to (−1)σ+1τ . For α ̸= 1, then by Lemma 5.1 and (5.4),

⟨
√
−1∂α · ∂0 · ∂n · ϕ0, ϕ0⟩ = 0, α ̸= 1.

So Wα → 0 as |x| → ∞. Hence f2 − |W |2 limits to zero as |x| → ∞. Therefore,
f = |W |. □
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Remark 5.4. Note that we cannot derive that f2 − |W |2 is asymptotic to zero
without assuming the boundary condition (5.3). Consideration of f2 − |W |2 at the
boundary is necessary.

Lemma 5.5. Setting ξ =W/f , then

(5.6) ξ · e0 · ϕ = ϕ, ⟨e · e0 · ϕ, ϕ⟩ = 0

where e is orthogonal to ξ. And along ∂M ,

⟨ξ, en⟩ = (−1)σ cos θ, (−1)σ+σ1
√
−1|ξ⊤|−1ξ⊤ · e0 · en · ϕ = ϕ,

where ξ⊤ is the component of ξ tangential to ∂M .

Proof. It follows from the boundary condition Qϕ = (−1)σϕ, more specifically,
(3.6) and (3.7) that

f = ⟨ξ · e0 · ϕ, ϕ⟩

= ⟨ξ, en⟩⟨en · e0 · ϕ, ϕ⟩+ ⟨ξ⊤ · e0 · ϕ, ϕ⟩

= (−1)σ⟨ξ, en⟩κ|ϕ|2 + τ |ξ⊤|
〈√

−1 (−1)σ+σ1ξ⊤

|ξ⊤| · e0 · en · ϕ, ϕ
〉
.

Assume that ⟨ξ, en⟩ = (−1)σ cos θ1 and |ξ⊤| = sin θ1 where θ1 ∈ [0, π] is a function
on ∂M , then

f = |ϕ|2 =cos θ1 cos θ|ϕ|2 + sin θ sin θ1
〈√

−1|ξ⊤|−1(−1)σ+σ1ξ⊤ · e0 · en · ϕ, ϕ
〉

⩽|ϕ|2(cos θ1 cos θ + sin θ sin θ1)

=|ϕ|2 cos(θ − θ1),

which forces θ1 = θ along ∂M . In particular, it gives ⟨ξ, en⟩ = (−1)σ cos θ and

(5.7)
〈√

−1|ξ⊤|−1(−1)σ+σ1ξ⊤ · e0 · en · ϕ, ϕ
〉
= |ϕ|2 along ∂M.

The above gives the rest of the lemma. □

Remark 5.6. We see

(5.8) (−1)σξ⊤|ξ⊤|−1 → −∂1, (−1)σξ → −κ ∂
∂xn − τ ∂

∂x1

as |x| → ∞.

5.2. Multiple spinor components. Let ϕ be a spinor given in Lemma 5.3, we
fix the convention ξϕ to denote the vector field given in Lemma 5.5.

Lemma 5.7. Let ψ and ϕ be two spinors given in Lemma 5.3 corresponds to σ = χ1

and σ = χ2 respectively where χ1 and χ2 are two integers. Then (−1)χ2ξϕ =
(−1)χ1ξψ.

Proof. Set z = ⟨ψ,ψ⟩ − ⟨ϕ, ϕ⟩ and Zj = ⟨ej · e0 · ψ,ψ⟩ − (−1)σ2−σ1⟨ej · e0 · ϕ, ϕ⟩.
Calculating

∇iz = −(−1)σ1pijZj , ∇iZj = −(−1)σ1pijz

directly which gives ∇i(z
2 − |Z|2) = 0, so z2 − |Z|2 is constant. It follows from

(5.8) that ξψ → (−1)χ2−χ1ξϕ as x → ∞, and the only non-zero component of the
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limit of Z is the limit of ⟨Z, ξϕ⟩ξϕ, which is actually zero. Moreover, we see easily
z → 0 as |x| → ∞. Hence, z2 = |Z|2 which yields

⟨ψ,ψ⟩2 + ⟨ϕ, ϕ⟩2 − 2⟨ϕ, ϕ⟩⟨ψ,ψ⟩

=
∑
i

(⟨ei · e0 · ψ,ψ⟩2 − 2(−1)χ2−χ1⟨ei · e0, ψ, ψ⟩⟨ei · e0 · ϕ, ϕ⟩+ ⟨ei · e0 · ϕ, ϕ⟩2).

By Lemma 5.3,

⟨ϕ, ϕ⟩⟨ψ,ψ⟩ =
∑
i

(−1)χ2−χ1⟨ei · e0, ψ, ψ⟩⟨ei · e0 · ϕ, ϕ⟩.

The right hand side reduces to the following

⟨ϕ, ϕ⟩⟨ψ,ψ⟩ = (−1)χ2−χ1⟨ξϕ · e0 ·ψ,ψ⟩⟨ξϕ · e0 ·ϕ, ϕ⟩ = (−1)χ2−χ1⟨ϕ, ϕ⟩⟨ξϕ · e0 ·ψ,ψ⟩

by applying (5.6) for the spinor ϕ, which gives ⟨ψ,ψ⟩ = (−1)χ2−χ1⟨ξϕ · e0 · ψ,ψ⟩.
So ξϕ = (−1)χ2−χ1ξψ which proves the lemma. □

Now we show the orthogonality of spinor solutions to (5.2) everywhere if they
are orthogonal at infinity.

Proposition 5.8. Let {ϕ0,i}i=1,2 be two spinor satisfying (4.3) with σ1 replaced by
two integers {σ1,i} and {ϕi} be given in Theorem 4.1 with suitably chosen σ = σ(i)
corresponding to σ1,i. Assume in addition (5.1) holds, and {ϕ0,i} are of unit length
and orthogonal, then

|ϕ1| = |ϕ2|, ⟨ϕ1, ϕ2⟩ = 0

everywhere.

Proof. Since |ϕi| > 0, everywhere, we can assume that |ϕ1| = c|ϕ2| at some point of
M for some positive constant. We set ν = (−1)σ(i)ξϕi

by Lemma 5.7, and a simple
calculation gives

∇j(|ϕ1|2 − c|ϕ2|2) =− pjk((−1)σ(1)⟨ek · e0 · ϕ1, ϕ1⟩ − (−1)σ(2)(ek · e0 · ϕ2, ϕ2))
=− (p(ej , (−1)σ(1)ξϕ1)|ϕ1|2 − p(ej , (−1)σ(2)ξϕ2)|ϕ2|2)
=− pjν(|ϕ1|2 − c|ϕ2|2).

Then |ϕ1|2 = c|ϕ2|2 everywhere by an ODE argument. The norms of both ϕ1 and
ϕ2 approaches to 1, so c = 1. It remains to show ϕ1 and ϕ2 are orthogonal. If
σ(1) = σ(2) + 1, then

∇j⟨ϕ1, ϕ2⟩ = 0

by (5.2). Combining with that ⟨ϕ1, ϕ2⟩ approaches zero as |x| → ∞ leads to
⟨ϕ1, ϕ2⟩ = 0. If σ(1) = σ(2), we can assume that ν · e0 · ϕi = ϕi. It is easy to check
1√
2
(ϕ1 + ϕ2) and 1√

2
(ϕ1 − ϕ2) satisfy the assumptions of the proposition, hence,

they have the same norm. Similarly, for 1√
2
(ϕ1 +

√
−1ϕ2) and 1√

2
(ϕ1 −

√
−1ϕ2).

The polarization yields ⟨ϕ1, ϕ2⟩ = 0. □

5.3. Foliation by flat capillary MOTS. In this section, we carry an argument
used by [BC96] for a single spinor component.

Proposition 5.9. Let ϕ be a spinor, and f and W be the function and the vector
field associated with it given in Lemma 5.3,

(a) there exists a global foliation of M such that W is normal to each leaf;
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(b) each leaf Σ is a capillary MOTS; in particular, the unit normal of Σ is given
by ν = (−1)σξϕ and let hΣ = ∇ν be the second fundamental form of Σ in M ,
then hΣ + p|Σ = 0;

(c) The spinor ϕ|ϕ|−1 is parallel with respect to the induced spinor connection of
Σ.

Proof. Around a point q near infinity, let {εi} be an orthonormal frame such that
∇εiεj = 0 at q. Let {εi} be the dual frame and ω be the dual 1-form of W . Here,
the components of tensors or forms are taken with respect to the frame {ei}. Then
ω =Wiε

i and the calculation

dω(εi, εj)

=εi(ω(εj))− εj(ω(εi))

=εi⟨W, εj⟩ − εj⟨W, εi⟩
=⟨∇iW, εj⟩ − ⟨∇jW, εi⟩
=− (−1)σ(⟨fq(εi), , εj⟩ − ⟨fq(εj), εi⟩)
=0,

shows that ω is a closed 1-form. By the Frobenius theorem, there exists a foliation
of M such that W is normal to each leaf, say Σ.

Note that ξϕ = W/f is a unit normal to Σ, let ν = (−1)σξϕ. We can assume
that εn = ν and the indices i, j < n. Then by (5.5),

hΣij = ⟨∇iν, εj⟩
= (−1)σ⟨∇i(W/f), εj⟩
= (−1)σf−2⟨f∇iW −W∇if, εj⟩
= (−1)σf−1∇iWj

= −pij .
This shows that Σ is a MOTS. The capillarity follows from ⟨ν, εn⟩ = κ proven
earlier in Lemma 5.5. (Considering asymptotics, Σ ∩ ∂M ̸= ∅.)

Recall that the hypersurface spinor connection on Σ is given by

∇Σ
i = ∇i +

1
2 (∇iν) · ν · .

Hence,

∇Σ
i ϕ

=∇iϕ+ 1
2 (∇iν) · ν · ϕ

=− 1
2 (−1)σpijεj · ε0 · ϕ− 1

2

∑
j<n

pijεj · ν · ϕ

=− 1
2 (−1)σpijεj · ε0 · ϕ+ 1

2 (−1)σ
∑
j<n

pijεj · ε0 · ϕ

=− 1
2 (−1)σpinεn · ε0 · ϕ = − 1

2pinϕ,

where we have used (−1)σν · ε0 · ϕ = ϕ and ∇iν = −
∑
j pijεj . Therefore,

∇Σ
i (ϕ|ϕ|−1) = |ϕ|−1∇Σ

i ϕ− 1
2 |ϕ|

−3ϕ(⟨∇Σ
i ϕ, ϕ⟩+ (ϕ,∇Σ

i ϕ)) = 0.

That is, |ϕ|−1ϕ is a parallel spinor with respect to the induced spinor connection
of Σ. □
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Now we determine the equations satisfied by the boundary ∂M , in particular,
we determine all the components of symmetric 2-tensor h∂M + κp|∂M .

Lemma 5.10. Let {ei} be an orthonormal frame defined near ∂M such that en is
the unit outward normal of ∂M in M , and e1 be such that e1 = (−1)σ+1ξ⊤|ξ⊤|−1,
then the only nonzero components of the symmetric 2-tensor h∂M+κp|∂M is h∂M11 +
κp11 = τpn1 and pni=0 for i ̸= 1, i ̸= n along ∂M .

Proof. Since Qϕ = (−1)σϕ along ∂M and ∇̃αϕ = 0, we see

∇̃α(Qϕ) = 0.

Expanding by using the definitions of Q and ∇̃, we see

0 =∇̃α(Qϕ)

=(∇α + 1
2 (−1)σpαjej · e0·)Qϕ

=(∇αQ) · ϕ+Q · ∇αϕ+ 1
2 (−1)σpαjej · e0 ·Q · ϕ

=κ∇αen · e0 · ϕ+ τ(−1)χ1
√
−1∇αen · ϕ

+ 1
2 (−1)σpαj(ej · e0 ·Q · ϕ−Q · ej · e0 · ϕ)

=κhαβeβ · e0 · ϕ+ τ(−1)χ1hαβ
√
−1eβ · ϕ

+ 1
2 (−1)σpαβ(eβ · e0 ·Q · ϕ−Q · eβ · e0 · ϕ)

+ 1
2 (−1)σpαn(en · e0 ·Q · ϕ−Q · en · e0 · ϕ)

=κhαβeβ · e0 · ϕ+ τ(−1)χ1hαβ
√
−1eβ · ϕ

− κpαβ(−1)σeβ · en · ϕ

+ τpαn(−1)σ+χ1
√
−1e0 · ϕ.

We calculate 0 = ⟨eγ · ∇̃α(Qϕ), ϕ⟩, and obtain

0 = τ(−1)σ1
√
−1hαβ⟨eβ · ϕ, eγ · ϕ⟩

− κpαβ(−1)σ⟨eβ · en · ϕ, eγ · ϕ⟩

+ τpαn(−1)σ+χ1
√
−1⟨e0 · ϕ, eγ · ϕ⟩

= −τ(−1)χ1
√
−1hαβ⟨eγ · eβ · ϕ, ϕ⟩

− κpαβτ(−1)χ1
√
−1⟨eγ · eβ · ϕ, ϕ⟩

− τpαn(−1)σ+χ1
√
−1⟨eγ · e0 · ϕ, ϕ⟩

= −τ(−1)χ1
√
−1hαβ⟨eγ · eβ · ϕ, ϕ⟩

− κpαβτ(−1)χ1
√
−1⟨eγ · eβ · ϕ, ϕ⟩

− τ2pαn(−1)σ+χ1+σ+χ1
√
−1⟨

√
−1 · eγ · e0 · en · ϕ, ϕ⟩

Dividing the above by τ(−1)σ1
√
−1,

(hαβ + κpαβ)⟨eγ · eβ · ϕ, ϕ⟩ − τpαn(−1)χ1⟨
√
−1eγ · e0 · en · ϕ, ϕ⟩ = 0.

Taking the real part,

−(hαγ + κpαγ)− τpαn(−1)σ1⟨
√
−1eγ · e0 · en · ϕ, ϕ⟩ = 0.

By symmetry,

−(hαγ + κpαγ)− τpγn(−1)σ1⟨
√
−1eα · e0 · en · ϕ, ϕ⟩ = 0.
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Taking γ = 1 and applying (5.7) gives

−(hα1 + κpα1) + τpαn = 0.

Taking γ ̸= 1 and applying (5.7) leads to

hαγ + κpαγ = 0 for γ ̸= 1.

Now since the equality of (1.2) is achieved, we see pαn = 0 for α ̸= 1. □

Lemma 5.11. Let Σ be a leaf of the foliation given in Proposition 5.9, then ∂Σ is
totally geodesic in Σ.

Proof. Let ν = (−1)σξ, then ζ̃ = η − ⟨η, ν⟩ν is normal to ∂Σ in Σ. And the norm
of this vector is

|ζ̃|2 = |η − ⟨η, ν⟩ν|2 = |η|2 − ⟨η, ν⟩2 = τ2

which is a constant. Let 2 ⩽ i, j ⩽ n− 1, then the vector field ei and ej is parallel
to ∂Σ. We verify the following

⟨∇iζ̃, ej⟩
=⟨∇iη − ⟨η, ν⟩∇iν, ej⟩

=h∂Mij − ⟨η, ν⟩hΣij
=h∂Mij + κpij = 0

by Proposition 5.9 and Lemma 5.10. Hence, ∂Σ is totally geodesic in Σ. □

Now we can actually have the following structure for the original initial data set
(M, g, p).

Theorem 5.12. There exists a globally defined function u such that u→ −κxn −
τx1 as |x 7→ ∞ such that each level set Σ is a flat capillary MOTS. Moreover, let
{εn} be an orthonormal frame such that εn = ν along Σ. We set in this theorem
that the components of geometric quantities are take with respect to the frame {εi}.
Define

R̂ijkl = Rijkl + pjkpil − pikpjl.

Then

∇ipjn −∇jpin = 0,

R̂ijkl = ∇ipjk −∇jpik for all i, j, k, l

R̂ijkl = 0 for all i < n, j < n, k, l.

Proof. Let m be the dimension of the spinor bundle of Sn,1, see Section 3.1 (in fact,
m = 2[n/2]+1). Let {ϕ0,i}1⩽i⩽m be an orthonormal basis of the constant spinors
such that √

−1 ∂
∂x1 · ∂

∂x0 · ∂
∂xn · ϕ0,i = (−1)σ1,i+1ϕ0,i,

where σ1,i = −1 if 1 ⩽ i ⩽ m/2 and σ1,i = 0 if m/2 < i ⩽ m. We can obtain a set
of spacetime spinors {ϕi}1⩽i⩽m such that each ϕi is asymptotic to ϕ0,i. Each ϕi
defines a foliation, say Fi of M , by Lemma 5.7 and Proposition 5.8, the foliations
{Fi} are the same one. By Proposition 5.8, {ϕi|ϕi|−1} forms an orthonormal basis
of parallel spinors along each leaf Σ. Hence, Σ must be flat. Moreover, the boundary
∂Σ is totally geodesic. Hence each leaf Σ is flat Rn−1

+ and M is topologically Rn+.
By the Poincaré lemma, (−1)σW = ∇u for some global function u where σ and

W are associated with any choice of spinor from the set {ϕi}.
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With suitable scaling, we see u → −κxn − τx1 as |x| → ∞ from (5.8). For any
m-tuple s = (s1, . . . , sm) of spinors and any Euclidean vector X, we define a linear
transformation ωX by

(ωXs)i =

m∑
j=1

(ωX)ijsj = ⟨X · ∂
∂x0 · ϕ0,j , ϕ0,i⟩sj .

Let N0 be the limit of ν. We set s = (ϕ1, . . . , ϕm), then by (5.6) and Lemma 5.7,

ωN0
s = ν · e0 · s.

Moreover,

∇is+
1
2pijej · e0 · ωN0

s = 0,

since the components of s solves (5.2). The formal notation of ωN0
and Proposition

5.8 then allows us to re-use the calculation in [CW24, Section 3.6] which finishes
the proof. □

Remark 5.13. It follows from (5.5) that ∆u + trg p|∇u| = 0. The function u is
called a spacetime harmonic function introduced by [HKK22].

5.4. Construction of pp-wave spacetime metric. We use the spacetime har-
monic function u in Theorem 5.12 and find canonical coordinates {yα}1⩽α⩽n−1 on
its level sets.

We set yn = u and we calculate the metric in terms of {yi}1⩽i⩽n. For y1, we
solve

(5.9) ∆Σy
1 = 0 in Σ, y1 = κ

τ y
n along ∂Σ, y1 = τxn − κx1 + o(1).

For yi with 2 ⩽ i ⩽ n− 1, we solve

∆Σy
i = 0 in Σ, ∂yi

∂y1 = 0 along ∂Σ, yi = xi + o(1).

Note that by (5.9), ∂
∂y1 is orthogonal to ∂Σ in Σ.

Remark 5.14. We are less concerned with the decay rates of {yi} and later such
quantities as N , Y , ℓ and F , which were well studied in [HZ24]. The reason, in
our case, is that it is enough to take the boundary version of various estimates (see
[ABdL16, Section 3]) into consideration as well.

We have another set of asymptotically flat coordinates {zi} onM related to {yi}
by

(5.10) z1 = −τyn − κy1, zi = yi if 2 ⩽ i ⩽ n− 1, zn = −κyn + τy1.

See Figure 5.1.
Note that {zi} models on the original asymptotically flat coordinates {xi}, and

they are asymptotic to each other. We set N = |∇u|−1 and Yα = g
(

∂
∂yn ,

∂
∂yα

)
.

The metric g is now given by

(5.11) g = (N2 + |Y |2)(dyn)2 + 2Yαdy
ndyα +

n−1∑
α=1

(dyα)2.

The inverse metric is then

(5.12) g−1 =

[
N−2 −N−2Y T

−N−2Y In−1 +N−2Y Y T

]
.



A TILTED SPACETIME POSITIVE MASS THEOREM 19

zn

yn

z1

y1

Σ

∂M

zi = yi

Figure 5.1. Relations between {yi} and {zi}.

The findings of Hirsch-Zhang [HZ24, Lemmas 5.3-5.5] regarding (5.11) are col-
lected below.

Lemma 5.15. Let Σ be any yn-level set, there exists some function ℓ such that
Yα = ∇Σ

αℓ. And (M, g) arises as the {t = −ℓ} spacelike slice of the pp-wave
spacetime metric (see Definition 1.6)

(5.13) g̃ = −2dtdyn + F (y)(dyn)2 +
∑
α

(dyα)2,

where y = (y1, . . . , yn) and y1 ⩾ κ
τ y

n (since zn ⩾ 0), and F = N2 + |∇Σℓ|2 − 2ℓu
is superharmonic on Σ.

Remark 5.16. The Killing the development is given by g̃ = 2dτdu+ g on M ×R =
Rn+1

+ and (5.13) is obtained by setting τ = −t− ℓ. And F is superharmonic due to

(5.14) µ = − 1
2N

−2∆ΣF

and the dominant energy condition (1.1). We also have the helpful relation

(5.15) pαβ = N−1ℓαβ , p = −|∇yn|−1∇2yn = −N∇2yn.

Now we derive an equation satisfied by Y1 and N on the boundary. We calculate
all the components of the second fundamental form h∂M + κp|∂M of ∂M in M . To
this end, we need the Christoffel symbols of the metric, which is recorded in Lemma
A.1.

Lemma 5.17. Let ℓ and N be given as above, then

(5.16) |∇zn| = 1 and κ+ τY1 = κN,

along ∂M .

Proof. The vector field ∂
∂y1 is normal to ∂Σ in Σ by construction, and ∇zn|∇zn|−1

is the unit inward normal of ∂M in M . Since Σ and ∂M form a contact angle θ by
Proposition 5.9, then 〈

∂
∂y1 ,

∇zn
|∇zn|

〉
= τ,

which gives |∇zn| = 1. So using (5.12),

1 = |∇zn|2 = | − κ∇yn + τ∇y1|2

=κ2gnn − 2κτgn1 + τ2g11

=κ2N−2 + 2κτN−2Y1 + τ2(1 +N−2Y 2
1 ).
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By solving the above, τY1 = −κ ± κN . Considering the asymptotics, it is only
possible that κ+ τY1 = κN . □

We now express the boundary curvatures h∂M in terms of the metric.

Lemma 5.18. We have

(h∂M + κp)( ∂
∂z1 ,

∂
∂yα ) = h∂Mαβ + κpαβ = 0,

(h∂M + κp)( ∂
∂z1 ,

∂
∂z1 ) = − 1

2τ
3F1,

along ∂M for α ̸= 1, β ̸= 1.

Proof. The unit outward normal of ∂M in M is given by −∇zn, so
h∂Mαβ

=−∇α∇βz
n

=κ∇α∇βu+ τ∇α∇βy
1

=− κN−2ℓαβ + τΓ1
αβ

=− κN−2ℓαβ − τN−2ℓ1ℓαβ ,

for α ̸= 1, β ̸= 1. Since pαβ = N−1ℓαβ , h
∂M
αβ + κpαβ = N−2ℓαβ(κN − κ − τℓ1)

which vanishes by (5.16).
First, we have that

(5.17) h∂M + κp = (k − κN)∇2yn − τ∇2y1

restricted to T∂M ⊗ T∂M using (5.10) and (5.16). Hence,

h∂M ( ∂
∂z1 ,

∂
∂yα ) + κp( ∂

∂z1 ,
∂
∂yα )

=(κN − κ)(∇2yn)(τ ∂
∂yn + κ ∂

∂y1 ,
∂
∂yα ) + τ(∇2y1)(τ ∂

∂yn + κ ∂
∂y1 ,

∂
∂yα )

=(κN − κ)(τΓnnα + κΓn1α) + τ(τΓ1
nα + κΓ1

1α)

=(κN − κ)(τΓnnα + κΓn1α)− τℓ1(τΓ
n
nα + κΓn1α),

where we have used Lemma A.1 in the last line. Hence

h∂M ( ∂
∂x1 ,

∂
∂yα ) + κp( ∂

∂x1 ,
∂
∂yα ) = (τΓnnα + κΓn1α)(−τℓ1 + κN − κ)

which again vanishes due to (5.16). It remains to show the last item, and for that
we need (∇2yn)( ∂

∂z1 ,
∂
∂z1 ) and (∇2y1)( ∂

∂z1 ,
∂
∂z1 ). We now calculate,

(∇2yn)( ∂
∂z1 ,

∂
∂z1 )

=(∇2yn)(τ ∂
∂yn + κ ∂

∂y1 , τ
∂
∂yn + κ ∂

∂y1 )

=− (τ2Γnnn + 2κτΓn1n + κ2Γn11),

and

(∇2y1)( ∂
∂z1 ,

∂
∂z1 )

=(∇2y1)(τ ∂
∂yn + κ ∂

∂y1 , τ
∂
∂yn + κ ∂

∂y1 )

=− (τ2Γ1
nn + 2κτΓ1

1n + κ2Γ1
11)

=τ2(ℓ1Γ
n
nn + 1

2F1) + 2κτℓ1Γ
n
1n + κ2ℓ1Γ

n
11.

In the above, we have used Lemma A.1. Hence,

(h∂M+κp)( ∂
∂z1 ,

∂
∂z1 ) = (κN−κ−τℓ1)(τ2Γnnn+2κτΓn1n+κ

2Γn11)− 1
2τ

3F1 = − 1
2τ

3F1.
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by (5.17) and then (5.16). □

To complement Lemma 5.18, we also calculate p(en, ·) restricted to ∂M . Recall
that en = −∇zn.

Lemma 5.19. We have

p( ∂
∂yα ,∇z

n) = 0,

p( ∂
∂z1 ,−∇zn) = − 1

2N
−1τ2F1.(5.18)

Proof. We check p( ∂
∂yα ,∇z

n) = 0 first. Because of (5.15), we need to calculate

(∇2u)( ∂
∂yα ,

∂
∂yn ) and

(∇2u)( ∂
∂yα ,

∂
∂yβ

) = −Γnαβ = −N−2ℓαβ .

And

(∇2u)( ∂
∂yn ,

∂
∂yα ) = −Γnnα = − 1

2N
−2(N2 + |∇Σℓ|2),α.

So

∇α∇∇uu

=gni∇α∇iu = gnn∇α∇nu+ gnβ∇α∇βu

=− 1
2N

−4(N2 + |∇Σℓ|2),α + (−N−2ℓβ)(−N−2ℓαβ)

=−NαN
−3.

and

∇α∇∇y1u

=g1n∇α∇nu+ g1β∇α∇βu

=(−N−2ℓ1)(− 1
2N

−2(N2 + |∇Σℓ|2)α) + (δ1β +N−2ℓ1ℓβ)(−N−2ℓαβ).

Then

∇α∇∇znu

=∇α∇−κ∇yn+τ∇y1u

=N−1(κNαN
−2 + τNαℓ1N

−2 − τN−1ℓ1α)

=−N−1(κN−1 + τℓ1N
−1),α = 0

by (5.16). The calculation of the right hand side of (5.18) is the most involved in
this proof. Indeed,

Nτp( ∂
∂z1 ,−∇zn)

=N2τ(∇2u)( ∂
∂z1 ,∇z

n)

=−N2τ(∇2u)(τ ∂
∂yn + κ ∂

∂y1 ,−κ∇y
n + τ∇y1)

=−N2τ(−κτΓnnigni − κ2Γn1ig
ni + τ2Γnnig

1i + κτΓn1ig
1i)

=−N2τ(−κτΓnnngnn − κ2Γn1ng
nn + τ2Γnnng

1n + κτΓn1ng
1n)

−N2τ(−κτΓnnαgnα − κ2Γn1αg
nα + τ2Γnnαg

1α + κτΓn1αg
1α).
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Using the two consequences of (5.16) −κgnn+τg1n = −κN−1 and −κgnα+τg1α =
τδ1α + κN−1ℓα,

Nτp( ∂
∂z1 ,−∇zn)

=N2τ(κτN−1Γnnn + κ2N−1Γn1n)

−N2τ [τΓnnα(τδ1α + κN−1ℓα) + κΓn1α(τδ1α + κN−1ℓα)]

=Nκτ(τΓnnn + κΓn1n)

−N2τ(τ2Γnn1 + κτN−1ℓαΓ
n
nα + κτΓn11 + κ2N−1ℓαΓ

n
1α)

=Nκτ2(Γnnn − ℓαΓ
n
nα) +Nκ2τΓn1n

−N2τ3Γnn1 −N2κτ2Γn11 −Nκ2τℓαΓ
n
1α

=κτ2Nn + 1
2κ

2τN−1(N2 + |∇Σℓ|2),1
− 1

2τ
3(N2 + |∇Σℓ|2),1 − κτ2ℓ11 −N−1κ2τℓαℓ1α

=− 1
2τ

3F1.

In the last line, we have used

0 = ∂
∂z1 (κf − τℓ1) = κτNn − τ2ℓ11 + κ2N1 − τ2ℓ1n,

which is a consequence of (5.16) and that ∂
∂z1 is tangential to ∂M . □

Remark 5.20. The vector field

ẽ1 := ∂
∂z1 −

n−1∑
α=2

〈
∂
∂z1 ,

∂
∂yα

〉
∂
∂yα = ∂

∂z1 +

n−1∑
α=2

τℓα
∂
∂yα

is normal to ∂Σ in ∂M and it has length

|ẽ1|2

=⟨ ∂
∂z1 ,

∂
∂z1 ⟩ − τ2(|∇Σℓ|2 − ℓ21)

=τ2gnn + 2κτg1n + κ2g11 − τ2(|∇Σℓ|2 − ℓ21)

=τ2(N2 + |∇Σℓ|2) + 2κτℓ1 + κ2 − τ2(|∇Σℓ|2 − ℓ21)

=τ2N2 + (τ2ℓ21 + 2κτℓ1 + κ2)

=τ2N2 + (τℓ1 + κ)2 = τ2N2 + κ2N2 = N2,

where in the last line, we used (5.16). Hence |ẽ1| = N . Let e1 = N−1ẽ1, we see

h∂M (e1, e1) + κp(e1, e1) = τp(e1, en),

where en = −∇zn from

(h∂M + κp)( ∂
∂z1 ,

∂
∂z1 ) = Nτp( ∂

∂z1 ,−∇zn),
which checks out with Lemma 5.10.

We now provide a proof of Theorem 5.21 which is an expanded version of The-
orem 1.7 by summarizing the results proven so far.

Theorem 5.21. Let (M, g, p) be a spin asymptotically flat initial data set, which
satisfies the dominant energy condition (1.1), the tilted dominant energy condition
(1.2) and has zero mass, i.e.

E + cos θPn = sin θ|P̂ |,



A TILTED SPACETIME POSITIVE MASS THEOREM 23

then (M, g) admits a set of coordinates {yi} such that

(a) the metric is of the form

g = (N2 + |∇Σℓ|2)(dyn)2 + 2ℓαdy
αdyn +

∑
α

(dyα)2,

and satisfies

cos θ + sin θℓ1 = cos θN along ∂M ;

(b) the yn-level sets are flat capillary MOTS;
(c) (M, g, p) isometrically embeds into(

M × R, g̃ = −2dtdyn + F (y)(dyn)2 +
∑
α

(dyα)2

)
with t = −ℓ over the {t = 0}-slice in (M×R, g̃) with the the second fundamental
form given by p = −|∇yn|−1∇2yn; moreover, F (y) = N2 + |∇Σℓ|2 − 2 ∂ℓ

∂yn is

superharmonic on any yn-level set and − ∂F
∂y1 ⩾ 0 along ∂M ;

(d) moreover if E + cos θPn = 0, then (M, g, p) lies in the half Minkowski space,
more specifically,(

M × R, g̃ = −2dtdyn + (dyn)2 +
∑
α

(dyα)2

)
where the boundary ∂(M × R) is given by the relation y1 = κ

τ y
n. Moreover,

h∂M + κp|∂M vanishes and p(η, ·)⊤ vanishes along ∂M .

Proof. First, (a) follows by Theorem 5.15, and (b) is already in Proposition 5.9.
The item (c) follows from Lemma 5.15, and − ∂F

∂y1 ⩾ 0 follows from Lemma 5.18

and the tilted boundary dominant energy condition (1.2).

It remains to show (d), we observe that |P̂ | = 0, so we can make free choices
of ∂

∂x1 in Subsection 5.1. Following once again all the proof, we see from Theorem

5.12 that R̂ijkl = 0 for all i, j, k, l and from (5.14) that ∆ΣF = 0; it follows

from Lemma 5.18 and the free choices of ∂
∂x1 that ∂F

∂y1 = 0 along ∂Σ. Since F

asymptotics to 1, by the Liouville theorem, F ≡ 1. And this finishes the proof. □

Appendix A. Calculation of Christoffel symbols

In this appendix, we record the Christoffel symbols of the metric (5.11) where
Yα = ∇Σ

αℓ.

Lemma A.1. Let g = (N2 + |∇Σℓ|2)du2 + 2ℓαdudy
α + |dy|2. The Christoffel

symbols of g satisfies the following relations:

Γnαn = 1
2N

−2(N2 + |∇Σℓ|2),α, Γβαn = −ℓβΓnnα,
Γnβα = N−2ℓβα,

Γnnn = Nn/N + ℓβΓ
n
nβ ,

Γγαβ = −N−2ℓγℓαβ = −ℓγΓnαβ ,
Γαnn = −ℓαΓnnn − 1

2Fα,

where F = N2 + |∇Σℓ|2 − 2ℓu.
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Proof. The proof is just tedious calculation. First, we calculate Γnαn,

Γnnα

= 1
2g
nn(gαn,n + gnn,α − gαn,n) +

1
2g
nβ(gαβ,n + gnβ,α − gnα,β)

= 1
2g
nngnn,α = 1

2N
−2(N2 + |Y |2),α.

Next Γγαβ ,

Γγαβ

= 1
2g
γn(gαn,β + gβα,n − gαβ,n) +

1
2g
γµ(gαµ,β + gβµ,α − gαβ,µ)

= 1
2g
γn(gαn,β + gβα,n) = −N−2ℓγℓαβ .

And Γnαβ ,

Γnαβ

= 1
2g
nn(gαn,β + gβn,α − gαβ,n) +

1
2g
nγ(gαγ,β + gβγ,α − gαβ,γ)

= 1
2g
nn(gαn,β + gβn,α) = N−2ℓαβ .

And Γβnα and Γnnn are related to Γnαn since,

Γβnα = 1
2g
βn(gnn,α + gαn,n − gnα,n) +

1
2g
βγ(gαγ,n + gnγ,α − gnα,γ)

= 1
2g
βngnn,α = − 1

2N
−2ℓβ(N

2 + |∇Σℓ|2),α = −ℓβΓnαn.

and

Γnnn

= 1
2g
nngnn,n + 1

2g
nα(2gnα,n − gnn,α)

= 1
2N

−2(N2 + |∇Σℓ|2),n − 1
2N

−2ℓα(2ℓαn − (N2 + |∇Σℓ|2),α)
=Nn/N + 1

2N
−2ℓα(N

2 + |∇Σℓ|2),α
=Nn/N + ℓαΓ

n
αn.

Finally, we verify the relation Γαnn = −ℓαΓnnn − 1
2Fα in the following:

Γαnn

= 1
2g
αngnn,n + 1

2g
αγ(2gnγ,n − gnn,γ)

=− 1
2N

−2ℓα(N
2 + |∇Σℓ|2),n + 1

2 (δαγ +N−2ℓαℓγ)(2ℓγn − (N2 + |∇Σℓ|2),γ)
=− 1

2N
−2ℓα(N

2 + |∇Σℓ|2),n + ℓαn − 1
2 (N

2 + |∇Σℓ|2),α
+ 1

2N
−2ℓαℓγℓγn − 1

2N
−2ℓαℓγ(N

2 + |∇Σℓ|2),γ
=− ℓαΓ

n
nn − 1

2F,α.

This finishes the proof. □
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