A TILTED SPACETIME POSITIVE MASS THEOREM

XTAOXIANG CHAI

ABSTRACT. We develop a mass type invariant asymptotically flat initial data
sets with a non-compact boundary. We show a corresponding spacetime posi-
tive mass theorem for spin initial data sets under the dominant energy condi-
tion and a suitable dominant energy condition on the boundary which we call
the tilted dominant energy condition.

1. INTRODUCTION

The positive mass theorem states that if a complete manifold which is asymp-
totically flat and with non-negative scalar curvature, an quantity called the ADM
mass defined at infinity is non-negative. It was proved by Schoen and Yau in their
seminal work [SY79] using a minimal surface technique. The ADM mass is a char-
acterization of scalar curvature at infinity. There are various works on the positive
mass theorem: [Wit81], [EHLS16], [ACGO08|, [Wan01], [CHO03|, [Sak21]. Here the
list is by no means exhaustive.

The study of the positive mass type theorems of the asymptotically flat manifold
with a non-compact boundary was initiated in the work [ABdL16]. The effect of
the mean curvature was included to the infinity and a boundary term was added to
the ADM mass. See [AdL20], [AdLMI19], [Chal8|, [Cha21] and [AdL22] for some
developments to the spacetime and the hyperbolic settings.

Almaraz-de Lima-Mari [AdLM19] introduced the asymptotically flat initial data
sets and prove a version of the spacetime positive mass theorem. In this paper,
we revisit the asymptotically flat initial data set with a non-compact boundary. In
particular, we introduce a new boundary dominant condition and prove the
spacetime positive mass theorem (Theorems for spin initial data sets.

1.1. Asymptotically flat initial data sets with a non-compact boundary.
An initial data set (M™, g,p) is an n-dimensional manifold which arises as a space-
like hypersurface of a Lorentzian manifold (S™1, §) with p being the second funda-
mental form. The components Ty and Tp; of the Einstein tensor (or the energy-
momentum tensor) T are respectively called the energy density p and the current
density J. Let eg be the future directed unit normal of M to S, e; be an or-
thonormal basis of the tangent space of M and we use the convention on p that

pij = §(Ve,e0,€5)-
The energy density p by the Gauss equation is

2p = Ry + (tryp)* — Ip[;
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and the current density J by the Gauss-Codazzi equation is
J =divp — gd(try p).

Definition 1.1. We say that (M, g,p) satisfies the interior dominant energy con-
dition if
(1.1) w1l
If OM # 0, let  be the outward normal of OM in M, Hyyr = divayr n. We say that
(M, g,p) satisfies the tilted boundary dominant energy condition on the boundary
oM if
(1.2) Han + cos@trap p = sinf|p(n,-) | on OM,
where § € [0,7] is a constant angle parameter and p(n,-)T denotes the component
of the 1-form p(n,-) tangential to OM .

The tilted boundary dominant energy condition (1.2]) generalizes the tangential

(0 = %) and normal boundary dominant energy conditions (f = 0) in [AdLM19].

Now we recall the definition of an asymptotically flat initial data set with a non-
compact boundary and its ADM energy and linear momentum of [AdLMTI9].

Definition 1.2. We say that an initial data set (M, g,p) is asymptotically flat with
a non-compact boundary if there exists a compact set K such that M is diffeomor-
phic to RT\B (the Euclidean half-space minus a ball) and

n—2
(1.3) lg — 8| + [«|0g] + |2]*|0%g| + |z|Ip| + |z[*|0p] = o(r™ "2 "),
where B is the standard FEuclidean ball of a fized radius.

Definition 1.3. Assume that p+ |J| € LY(M) and Hopr + |p(n,-) 7| € LY(OM),
then the quantities defined as

E - 7‘11{{010 l/gil,r (g'Lj,j B gjj,i)l/Z B /S’N*Z»T ean,&a‘| ’

Pi = 2/ L 7Ti]'U].
gn—1Lr

+

and

are finite and are respectively called the ADM energy and ADM linear momentum.
Here, v is unit normal to Si_l’r, Y is normal to S"~%" in OM and ® = p— gtry p.
Denote P = (Pry...,Pq), Sifl’r is the upper half of the coordinate sphere of
radius v and S""%7" = 851_1’T.

Note that we have included P, in the ADM linear-momentum as well, and this
is a key difference from [AdLMI9] Definition 2.4].

1.2. Tilted positive mass theorem. We use the spinorial argument of Witten
[Wit81] (see also [PT82]). We have the following two spacetime positive mass
theorems.

Theorem 1.4. If (M, g) is spin and (M, g,p) satisfies the interior dominant energy
condition (1.1)) and the tilted boundary dominant energy condition (L.2)) for some
nonzero 0 € [0, 7|, then

(1.4) E + cosOP, > sinf|P|.
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The special case § = 5 of the theorem is due to [AdLM19|. As we shall see later,
is related to an energy-momentum vector . Throughout this paper, we
assume that 6 € (0, 7), and the case §# = 0, m only requires minor modifications.

The time-symmetric case p = 0 of the theorem first appeared in [ABdL16] where
a minimal surface proof was also given. Here is the rough idea in dimension 3.
Assume that the energy (mass) E is negative, we can perturb the metric so that it
is harmonically flat at infinity, the scalar curvature and the mean curvature of the
boundary are strictly positive. Then the boundary OM and a plane asymptotically
parallel to OM serve as the barriers and we can find an area-minimizing minimal
surface which is asymptotic to a coordinate plane that lies in between. Then the
Gauss-Bonnet theorem applied on the stable minimal plane contradicts the strict
positivity of the scalar curvature and the mean curvature. An alternative proof was
given by the author [Chal8], where the free boundary minimal surface was used
instead. Assume that E < 0, we can construct a free boundary area-minimizing
surface that lies in between two coordinate half-planes. The existence of such a free
boundary minimal surface again contradicts the Gauss-Bonnet theorem.

Observing the two works and [EHLSI6], the two proofs are actually for the two
special cases when p vanishes: (I) § = 7/2 in [ChalS§]; (IT) or # = 0, 7 in [ABALI6].
It is then reasonable to expect a proof of the more general Theorem using the
capillary marginally outer trapped surface, see [ALY20]. While it is a possible
approach to Theorem the construction of capillary MOTS remains a technical
problem.

Definition 1.5. Let X be a hypersurface in the initial data set (M, g, k), the quan-
tity 0T = Hyg +trsp (0 = Hs — trsp) is called outer (inner) null expansion.
If 0+ =0 (6= = 0) along X, then ¥ is called a marginally outer (inner) trapped
hypersurface, in short MOTS (MITS). If ¥ N OM is nonempty, ¥ and OM forms
a constant contact angle 0, then we say 3 is a capillary MOTS.

We also need the capillary MOTS in the rigidity case of Theorem

1.3. Rigidity. The rigidity of the positive mass theorem was recently studied in
many works, for example, [HL23| [HL20, [HL23| [HL24, [HZ24]. Tt was found that
initial data sets of zero mass do not necessarily isometrically embeds into the
Minkowski time, see [BC96l [HL24]. We call an initial data set with zero mass a
rigid initial data sets. In general, the rigid initial data sets lies within the so-called
plane-fronted waves with parallel propagation or in short pp-wave spacetime.

Definition 1.6. We say a manifold S™' with a metric § of Lorentzian signature
is a pp-wave spacetime if SM! =R and

§ = —2dudt + Fdu? + dgn-1,
where F is independent of t and superharmonic on R"~1 x {u} for all u € R.

A rough version of the equality case of Theorem is given in the following.
For a precise statement, see Theorem [5.21

Theorem 1.7. If the equality
E + cos 0P, = sin0|P|

is achieved in (|1.4) of Theorem then (M, g,p) is foliated by flat capillary MOTS.
Moreover, it admits an isometric embedding into a pp-wave spacetime with the
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second fundamental form p, in particular, (M, g,p) isometrically embeds into the
half Minkowski spacetime if E + cos 0P, = 0.

This theorem can be seen as a boundary analog of Hirsch-Zhang [HZ24]. Our
approach combines an observation similar to [HZ24] that the equality in the Wit-
ten’s spinor proof [Witg1] is achieved by a set of spinors and a paper of the author
with Wan [CW24] on the dihedral rigidity of initial data sets.

We use the spinor spacetime spinor bundle in the proof, however, it is not nec-
essary in even dimensions. Because the Clifford multiplication by the timelike unit
vector ey can be replaced by the Clifford multiplication of the complex volume
element in the modified connection on the spacetime spinor bundle and the
chirality operator when the dimension is even. See [AdL22] where the oper-
ator was originally introduced. It is an interesting question to find a proof
without using the spacetime spinor bundle in odd dimensions. This is possible in
the usual case of spacetime positive mass theorem, the case by [HZ24], since there
is no boundary involved. We just replace the connection in by

Vi+ 3(=1)7V~1pije;-,

and proceed similarly using the techniques in Section

The article is organized as follows:

In Section 2 we describe the mass related Theorems[1.4]and show the invariance.
In Section [3| we collect basics of the chirality operator and the hypersurface
Dirac operator including the most important Schrodinger-Lichnerowicz formula. In
Section [, we give the proofs of Theorems In Section [5] we give the proofs of

the rigidity statement Theorem
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2. THE INVARIANCE OF MASS

In this section, we introduce the energy-momentum vector (E?, Pf) in (2.1]) based
on the Hamiltonian analysis in [HH96] and point out that the tilted dominant energy
condition (|1.2)) appears in selecting a suitable lapse function and the shift vector.

2.1. Hamiltonian formulation and mass invariance. Assume at present that
M is compact, we infinitesimally deform the initial data set (M, g, p) in S™! in the
direction of a future directed timelike vector field T'. Let ¢5 be the local flow of T,
Mg = ¢s(M). We assume that the unit normal eg to M, is always tangential to the
timelike hypersurface foliated by OMg. Let T'= Neg + X, where N is called the
lapse function and the vector field X tangent to M is called the shift vector, then
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the Hamiltonian along M is given by (see [HH96])

H(N, X) = /M Np o+ 27(X)] + 2 /a N = (X)X,

The tilted boundary dominant energy condition (1.2)) now comes from selecting
N =1 and X = cosfn + sin 7 where 7 is tangent to M in the boundary term of
the Hamiltonian. Indeed,

NH —p(X,n) + trg p(X,n)
=H — cosOp(n,n) —sinfp(r,n) + cos O trgyp
=H + cosOtrop p — sinfp(7,n),

which is non-negative if holds.

Now let (M, g,p) be the background (R, §,0), we take N to be a constant and X
be a translational Killing vector field of R”; . We consider the Hamiltonian H. (N, X)
on (M,§ + eg,ep) with (g,p) satisfying (1.3). We do the Taylor expansion of .
with respect to €, due to the fact that M is non-compact, usually the first order
terms do not vanish. These terms evaluated at infinity are precisely those given in
Definition [1.3] For a more complete account of these facts, we refer the readers to
[HH96], [Mic11] and [AdLMI9].

We define the charge density U which is a 1-form,

=N(divs g — d(trs g)) = (9 — 6)(V°N, )
+trs(g — 0)dAN + 2(p(X, ) — trsg p(-, X)s).
Let 7 be the space of translational Killing vector fields of Minkowski spacetime
denoted by RV'™. It is easy to see that 7 is identified with R @& W with R factor
representing the translation in a chosen timelike direction dy and W being the linear
space spanned by all translational Killing vector fields of (R™,§) orthogonal to 0g.

Each T € T can be uniquely written in the form T = Ndy + X°0; where N € R
and X* € R. We define the energy-momentum functional as follows:

Sn—2,r

M(T) = lim [Lnl,r U(QJC)(N,X) +/ Ng(ﬁ,@)} .

It was shown in [AdJLMI9| Proposition 3.3] that the energy-momentum functional
M(T') does not depend on the asymptotic coordinates (fixing dy) chosen at infinity.
For any 6 € (0,7), we define

(2.1) E? = M(52500 + <280,), P! = M(9;) for any i # n.

It is easy to check that E = M(9y), P, = M(09;) where (E,P) is as defined in
Deﬁnition so B = L. E 4+ <9p  We have the following.

sin 6 sinf =~ T

Theorem 2.1. Given any asymptotically flat initial data set (M,g,k), for any
6 € (0,7), the vector (E?, P?) € RV~ s well defined (up to composition with an
element of SOy p—1). In particular,
—(E°)*+ ()
i#n
and the causal character (E?, P?) € RV~ do not depend on the chart at infinity
to compute (E?, P?).
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Proof. Let 9y = =2(8y + cos 08,,), 0n, = = (cos 00y + ) and 9; = ;. There is

sin 6 sin§ .

a Lorentz boost from (9p, d1,...,0,) to (8o, 01, . ..,0y,) such that

Ao [ coshp sinhp o
9, )\ sinhp coshp On )’

on the plane spanned by {9y, 9, } with p defined by cosh p = ﬁ So (50, o1, On)
gives a new coordinate system for the Minkowski spacetime RY™. Let (Zg, Z1,...,%n) €
RY™ where % is expressed in the new coordinates. Obviously,

*(i0)2 + Z(in)z
is invariant under linear Lorentz transformations of R™™ which fixes 5n These
transformations as a subgroup of the special Lorentz group SO, is isomorphic to
SO1,n,—1. The discussion applies to

(M(50)v M(@:), s ’M(gn—1>7 M(én))’
and this is our theorem. (I
For the cases 6 = 0, m, it is simpler.

Theorem 2.2. Given any asymptotically flat initial data set (M, g, k), the quantity
E £ P, is a numerical invariant under isometries of R which includes rotations
and translations of the (n — 1)-dimensional hyperplane OR’! .

Proof. Note that ¥ and P, are invariant under rotations and translations of the
hyperplane {01, ...,0,_1}, see [AdLM19] Proposition 3.3]. O

3. HYPERSURFACE DIRAC OPERATOR

In this section, we recall the hypersurface Dirac spinors and the related Schrodinger-
Lichnerowicz formula (3.2)). We review the chirality operator and we relate
the boundary condition (3.4]) to the geometric quantities along the boundary oM
in Lemma [3.5

3.1. Hypersurface Dirac operator. The standard reference of spin geometry is
[LM89], we also refer to [PT82], [HZ03]. Denote by S the local spinor bundle of
S™1!, since M is spin, S exists globally over M. This spinor bundle S is called the
hypersurface spinor bundle of M. When our spacetime S is of dimension 3 + 1,
the local spinor bundle S have a simpler algebraic description by the representation
theory of the special linear group SL(2,C). In this case, the theory is easier to
understand, see [PT82] Section 2].

Let V and V denote respectively the Levi-Civita connections of § and g, we
use the same symbols to denote the lifts of the connections to the hypersurface
spinor bundle. There exists a Hermitian inner product (-,-) on S over M which is
compatible with the spin connection V. For any vector e of S and the hypersurface
spinors ¢, 1, we have

(e'¢7'¢)) = (¢’€¢)
where the dot - denotes the Clifford multiplication. This inner product is not
positive definite. However, there exists on S over M a positive definite Hermitian
inner product defined by

<¢, ¢> = (60 : (,ZS, 1/))
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where e is the future-directed unit timelike normal to M. We see that

<60 : ¢7,(/J> = <¢a €o - w>a <ei : ¢7¢> = _<¢a € ¢>7
where {e;} is an orthonormal basis over M. Then the spinor connection V over S
is related to V by
Vi=V;— $pijej o
This is essentially the spinorial Gauss equation. Moreover, the connection V is
compatible with (-,-) and V;(eg - ¢) = eg - V.
For our purpose, we extend V to V(?) defined by
(3.1) @Eg)ﬁb =Vip+ 2(—1)"pije; - €0 - &,
where o is an integer. The hypersurface Dirac (or Dirac-Witten) operator is then
given by
D) =e¢;. @EU) =D — 1(-1)7 try peg-,
where D is the standard Dirac operator. We also call a spinor ¢ satisfying b¢ =0
a (spacetime) harmonic spinor.
From here after, V and D will be referring to V(?) and D(°). When there is a
possible confusion, we will indicate the supscripts explicitly.

The integration form of the Schrodinger-Lichnerowicz formula (see [PT82]) is
given as follows.

Theorem 3.1. Let 2 be a compact manifold with boundary, we have for any smooth
spinor ¢ that

A2 _ = 12 ) a
/Q D) /Q FoP + /8 - Do.d) + (6,90
(3.2) .| /Q (it (“1)° - e0)b, &),

where v is the outward unit normal of 0N2.

3.2. Boundary chirality operator. We fix the conventions first. We use the
Greek letters «, [, v to indicate the indices which are not n in the rest of the
paper. The vector e, is used to denote the outer normal of OM in M and h
denotes the the second fundamental form of OM given by hapg = (V. _en,es), then

Hoy = Za hao-
The following chirality operator was introduced by [AdL22 Definition 3.3] where
eo is replaced by the Clifford multiplication of the complex volume element.

Definition 3.2. Given an integer o1, define Q%) by
(3.3) Q)¢ = cosbe, - e - ¢+ (—1)7 v/ —1sinbe, - ¢.
When there is no confusion, we write Q = Q°V) and we also use the convention
Q- ¢o=0Q9.

We collect the commutative and anti-commutative properties of ) below.
Lemma 3.3. The operator Q satisfies the following
(a) QoQ =1 and Q is self-adjoint;

(b) en-Q+Q-e, =—2(—1)71/~1sin6;
(c) ea-eg-€n-Q+Q eq-e5-en =—(—1)712y/—1sinfe, -es-;
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(d) eo- Q+Q-eg=0;

(e) ea-eg-eo- Q-+ Qeq-ep-eo =0;

(f) ea Qd— Q- eq =2(—1)71y/—1sinbe, - e,;

(9) o Qo+ Q-eq =2cosbe, e, - ep;

(h) €aen Q+Q eq-en=0;

(i) en-e0-Q+ Qe -eg=2cosb;

(G) ea-€eg-€n-€-Q+Q-eq-e5-e,-ey=2cosbe,-eg;

(k) eq-eo-Q+ Qeq - eg =2(—1)71y/—1sinfe, - eq - e

(l) fOT’ « 7é ﬂ; €a €3 Q = Qea C€B°y
(m) €oen-eo-Q=0Q ey en-ep.

Proof. All the items follows from direct calculation starting from the definition of @
in (3.3). As an example, we only show the last item. By and anti-commutative
property of the Clifford multiplication,

Ca€n-€y-Q=cosbey-e,-eo-en- e+ (—1)7y/—1sinfe, - e, -eg-en
= cosfeq + (—1)7'v/—1sinfe, - o,
Q- eq-e,-eg-=cosbeyg-e,-€q-ey-eo+ (—1)”1\/jlsin06n “€q e €
= cosfeq + (—1)7'v/—1sinfe, - €.
So the last item holds. O

3.3. Boundary terms in Schrodinger-Lichnerowicz formula. We calculate
the term (v - D¢, ¢) + (¢, V,¢) along OM when

(3-4) Qo= (-1)"¢,
where o5 is an integer. First, we compute a few inner products of spinors satisfying

)
Lemma 3.4. If a spinor ¢ satisfies (3.4) along OM, then

(3.5) (V—=le, - ¢, ¢) = (=1)7* T2 5in 0| ¢|?,
(3.6) (en - €0 ¢, ¢) = (—1)7 cosb]¢|?,
(3.7) (eq - €0 - &, @) = (—1)71 72 gin 9(\/—716Q e en - O, P).

Proof. The first term (3.5)) already appeared in [AdL22] Proposition 3.11]. From
Lemma [3.3] we have

(V=Ten Q. ¢) +(Q - V-Ten - ¢,0) = 2(~1)" sinb|¢|”.
Since @ is self-adjoint, so
(V=1en - Qp,¢) + (V—1ep - ¢, Qo) = 2(=1)7" sin f|¢[*.
Because Q¢ = (—1)72¢, we have
2(v~1ey, - ¢, ¢) = 2(—1)7* T2 sin 0|¢|,

which is the first item. The rest follow similarly from corresponding relations from
Lemma 3.3} O

The following lemma relates the boundary term in the integration form of Schrodinger-
Lichnerowicz formula (3.2) with the mean curvature H, troa p, pn; along the
boundary, and in particular, the tilted boundary dominant energy condition (L.2]).
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Lemma 3.5. If a spinor ¢ satisfies (3.4]) along OM, then
<@en¢ +éen- D¢, ¢>
=(DM ¢, ¢) — L Hon|o> — 3(—1)7172 cos O trans p|o|®
+ %(—1)‘7""71""72 Sin (v —1ppyeq - € - €n - O, 0).
Proof. Let DM be the boundary Dirac operatoror defined by
DM —¢ e, VM,
Here, VM is the spin connection intrinsic to M explicitly defined on spinor fields
on M restricted to OM as
ng = Va - %ha,gen c€g .
We calculate D?M ¢ with ¢ satisfying (3.4) and
D6M¢)
=€n " €En (vad) - %hozﬁen c €3 ¢)
=€p - (D¢ — €n ven(b) + %HQM(ZS
=€, Do+ Ve, ¢+ LHorno
=ep - (D¢ + 5(=1)7 try peg - ¢) + (@enﬁb — 5(=1)pnje; €0 - ¢) + 3Homo
So
<@e"¢ +en- -D(ba ¢>
_ oM 1 o 1 2
=(D" ¢, p) — 5(=1)7(trg pen - €0 - ¢ — Pnje; - o - &, ¢) — 3 Honr||™
It remains to calculate
(trgpen - €0 - ¢ — pnjej - €0 - b, P)
:<(tI‘3M ben +pnnen) “ €0 ¢ - (pnaea +pnnen) t €0 ¢7 ¢>
=trom plen - €0 ¢, ) — (Pnaa €0 &, P)
:(_]—)02 COSGtraM p|¢‘2 + (_1)01+02+1 <pnaea c €0 ¢> ¢>
=(—1)72 cos O trons p|d|* + (—1)7 T2 sin O(v/ —1ppaca - €0 - €n - &, @),
which follows from (3.6) and (3.7). O

4. THE POSITIVE MASS THEOREM
In this section, we prove the tilted spacetime positive mass theorem (Theorems

).

4.1. Existence of a spacetime harmonic spinor. When the initial data set
(M, g,p) is flat and totally geodesic, i.e. (M,g,p) is (R%,6,0), we define

Q¢ = Q"¢ = cos@a% : % cp+ (—1)7tV -1 sin96gn - .

Note that @? = I, and the eigenvalues of Q are +1. The standard hypersurface
spinor bundle S over (R ,4,0) splits into two eigen subbundles and the spinor ¢
satisfying

(4.1) Qo = (-1)"¢
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is closely related to our problem. Here o1 and o5 are the two integers defined earlier

in and .

We recall the following existence of a spacetime harmonic spinor ¢ which is
asymptotic to a constant spinor ¢ satisfying , and we extract the mass from
the boundary integral in (3.2). By Proposition 5.3] and the discussions
that followed, we have the following.

Theorem 4.1. Assume that (M, g, k) satisfies the dominant energy conditions (1.1)
and (1.2), and let 0 = 09. Given any nonzero constant spinor ¢qg satisfying (4.1)),
there exists a spinor ¢ which is asymptotic to ¢g and satisfies

D¢ =0 in M,
Qo= (-1)7¢ on OM.

4.2. Proof of positive mass theorems. Using the ¢ of Theoremin (13.2)), we
can give a proof of Theorem [1.2

Proof of Theorem[I.J} Let M, be the compact region bounded by M and S*~ 1.
By the integral form of Schrodinger-Lichnerowicz formula (3.2]), we have for any
spinor ¢, we have

/ Dof? /M S6P + /6 e Do) + (6. V0)] e

r

:%/ ((p+ (=1)7J - eg*) 9, @).

T

Note that OM, are made of two portions: one lies in the interior of M and the
other lies on 9M. Note that Q¢ = (—1)?¢ along OM, so by Lemma

/ Dol — / o2 +/ (v - Dé, 6) + (6, ¥, 8)]
M, M, M ,Nint M
+ / [(D?M,¢) = LH|B[> — § cos O tronr plof]
OM,.NOM
+ %(_1)01 / sin 9(\/j1pn7€y “€n € ¢7 ¢)>
OM,.NOM

1 / (4 (=1)7J - €0)d, ).
M,

It follows that (D¢, ¢) = 0 from [CHO3, (4.27)] (with e there replaced by Q).
We claim that

/ (v D, &) + (6, ,0)]
OM,Nint M

—L(E +cosOP,)|¢ol3 +sin(—1)7 Py (V=152 - 5% - 525 - do, do)s
as r — oo to finish the proof. Indeed, we proceed by calculation. First,
(v- D¢, ¢) + (¢, V0 9)
=(v- D¢, $) + (¢, V.9)
+3(=1)7(pijr” — trgpr')e; - eo - 6, )
=(v- D¢, ¢) + (¢, V) + 5(=1)7mi7 (ei - eo - ¢, 9),
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where v is the unit normal of M, Nint M pointing to the infinity. Because that
10} converges to a constant spinor ¢g and (e; - g - ¢, ) converges to the constant

(2 525 - b0, o), SO as 1 — 00
/ (v- Do, d) + (¢, V.¢) — 1 Elools
OM,Nint M

from [ABAL16] Section 5.2] and

%/ Tl (e eo - 6, 0) = 1P (g - 52 -0, $0) s -
M ,.Nint M
Here 6 is the standard Euclidean metric. It follows from ([3.6) that

P, <3$n' ¢07¢0> (— 1)0Pn0059‘¢0‘§7
and from ) that

sin Py <Ba:’y 810 ¢0’¢0> (— )Jﬁgsmep< _102v [‘)w" on ¢07¢0>

Up to here, we finish the proof of the claim. Now, given the above considerations,
as r — o9,

1(E +cos0P,)|¢ol3 +sin0(—1)7' P, (V- 827 awn : ¢0a¢0>
= [ 196R 44 [ e+ (177 c0)o0)

(4.2) + 3 /3M [(H + cos O trans p)|é|* + sin(—1)7* <\/j1pm€7 cen-eg- o, ¢>] .
Let

/S 1%}
A= P am 8:1:7’ © B0
we know from the last item of Lemma (3.3 that Q commutes with A and they have

the same eigen-spinors. It is not difficult to see that eigenvalues of A are =|P|. For
a fixed o1, we make a choice of ¢0 and o such that

(4.3) Py (V=152 - 52 - 52 - o, ¢o> (=17 Pllgol?,
which by the dominant energy conditions and ([1.2)), leads immediately to the
mass inequality E + cos0P, > sin6|P)|. O

5. ANALYSIS OF THE RIGIDITY

Our main assumption of this section is vanishing mass, that is,
(5.1) E + cos 0P, = sinf|P|.
5.1. Analysis of spinors. Let ¢ be a spinor satisfying and ¢ is given in
Theorem Assume in addition holds, then it is easy to see from that
(5.2) V% = Vip+ L(=1)pije; - e0- =0
And ¢ is also subject to the boundary condition
(5.3) Q¢ = ken-eq- ¢+ (—1)7 v/ —1e, - ¢ = (—1)7¢ along HM.
Hereafter, we set kK = cosf and 7 = sinf for convenience. We fix z; direction so
that % = P\If’\_l if P+ 0. If P =0, then we take any direction orthogonal to z,

direction to be 7.
We are going to use the following lemma quite often.



12 XIAOXIANG CHAI

Lemma 5.1. Let ¢ be a non-zero spinor and E; be a unit vector with
(VLB 000 6,0) = i (VLE -0 -0, 6,0)
Then
<V_1E2 808n¢)a¢> =0
where Ey is any vector orthogonal to Ey. If (\/—1E; -9y - Oy, - ¢, ¢) = |p|?, then
«/—1E1 .50.3n.¢:¢.
Proof. 1t is always true that
(V1B - 80 - 00 - 6, ¢) < |9

And the equality is achieved if and only if /—1E-0y-0,,-¢ = ¢. Let E(t),t € (—¢,¢)
be a short smooth curve such that |E(t)] = 1, E(0) = E; and E'(0) = E5. The
function f(t) := (V/—1E - 9y - O, - ¢,¢) attains its maximum at t = 0 by the
assumptions. Hence,

F1(0) = (V=1E'(0) -0y - 0n - 6,0) = (V=1E2 - 0o - O - 6,0) = 0,
which finishes the proof. |

Remark 5.2. Lemma holds for other vector-related operators on spinors, and
we will refer to Lemma [5.1] when it applies.

Lemma 5.3. Assume that ¢ is a spinor which is asymptotic to the constant spinor
oo of unit length which satisfies (5.2) and (5.3)). Assume in addition

(5.4) V=101 -0+ On - do = (—1)7 T .

Let f = (¢, ¢) and W; = {e; - eq - ¢, ¢), then f = |W|.

Proof. By a direct calculation,

(5.5) Vif =—=(=1)pi;W;, ViW; = —(=1)pi; f.

It follows then V;(f? — |W|?) = 0. Hence f? — |W|? is a constant. We choose an
orthonormal frame {e;} on the boundary OM such that e; is asymptotic to %,
and calculate the components of W. First, we calculate W,, along the boundary,

Wi = (en €0 ¢,0)
=3(=1)%en-e0- Q- d.0) +3(=1)7(en €0 ¢,Q - ¢)
= r(-1)7[¢[.
So W, tends to k(—1)7 as |z| — oco. For W,,,
Wa =(ea - €0 6, )
—L(=1)7(ea 0+ Q- 6, 8) + H(~1)(ea- co- ,Q- )
=(—1) 7 (V~leq - € - en - b, 0).
By , W1 tends to (—1)°*17. For a # 1, then by Lemmaand ,
(V=104 - 8o - Oy - do,d0) =0, & # 1.

So W, — 0 as |z| — co. Hence f2 — |W|? limits to zero as |z| — oo. Therefore,
=Wl O
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Remark 5.4. Note that we cannot derive that f2 — |W|? is asymptotic to zero
without assuming the boundary condition (5.3). Consideration of 2 — |[W|? at the
boundary is necessary.

Lemma 5.5. Setting & = W/ f, then
(5.6) §-eo =9, (e-e0-h,¢0) =0
where e is orthogonal to £&. And along OM
(€ en) = (=1)7cosf, (~1)7FV=LET T e e -0 = 0,
where &7 is the component of & tangential to OM.

Proof. 1t follows from the boundary condition Q¢ = (—1)?¢, more specifically,
(3.6) and (3.7) that
f=( e 0,0)
= (& en)(en €09, 0) + <£T €0 9, P)

odo1eT

= (=17 (¢ ea)klf + 7I€T| (VT o en - 6,0).

Assume that (¢,e,) = (—1)7 cos#; and [£T| = sin#; where 6; € [0, 7] is a function
on OM, then

f=18]* =cosb cosb|¢|*> +sinOsin by (V=1 |71 (—=1)7T ¢ g - en - b, )
<|¢|?(cos b cos § + sin @ sin 0;)
=|¢|? cos(0 — 61),

which forces 6, = 6 along M. In particular, it gives (¢, e,) = (—=1)7 cosf and
(5.7) (VLT TH =174 T g en - 6,0) = [ along OM.

The above gives the rest of the lemma. O
Remark 5.6. We see

(58) (=17 = =0, (-1)7€ = —rgle — 7o

as |z| — oo.

5.2. Multiple spinor components. Let ¢ be a spinor given in Lemma we
fix the convention &4 to denote the vector field given in Lemma

Lemma 5.7. Let ¥ and ¢ be two spinors given in Lemma corresponds to o = X1
and o = x2 respectively where x1 and x2 are two integers. Then (—1)X2§, =

(—1)ag,.
Proof. Set z = (¢Y,¢) — (¢,¢) and Z; = (e; - eg - ¥, 9) — (—1)7277{e; - ey - &, ).
Calculating

Viz = —(—1>Ulpiij, ViZj = —(—1>Ulpijz
directly which gives V;(2%2 — |Z|?) = 0, so 22 — |Z|? is constant. It follows from
(5.8) that &, — (—1)X27X1€y as © — oo, and the only non-zero component of the
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limit of Z is the limit of (Z,{y){,, which is actually zero. Moreover, we see easily
z — 0 as |z| — oco. Hence, 22 = |Z|? which yields

(0, 9)? + (8, 0)% — 2(, ) (), 9)
:Z(<el c €0 wa ¢>2 - 2(_1)X2_X1 <ei . 607w7w><€i t €0 ¢a ¢> + <€i t €0 ¢a ¢>2)

By Lemma [5.3]
(6, 0) (W, 0y =Y (1) X e; - €0, b, V) (e - €0 - ¢, B).

K3

The right hand side reduces to the following
(9, 0) (1, ¥) = (=1)* X (€ €0 ¥, V) (€ - €0~ ¢, ) = (=1)* X, 9)(&s - €0 -1, ¥)

by applying (5.6) for the spinor ¢, which gives (¥, ¢) = (=1)X>7X1({, - eg - ¢, V).
So &y = (—1)X>7X1&,, which proves the lemma. O

Now we show the orthogonality of spinor solutions to (5.2)) everywhere if they
are orthogonal at infinity.

Proposition 5.8. Let {¢o;}i=1,2 be two spinor satisfying with o1 replaced by
two integers {o1,:} and {¢;} be given in Theorem with suitably chosen o = o(;)
corresponding to o1 ;. Assume in addition holds, and {¢o,;} are of unit length
and orthogonal, then

|p1] = |p2|, (¢1,¢2) =0

everywhere.

Proof. Since |¢;| > 0, everywhere, we can assume that |¢1]| = c|¢2| at some point of
M for some positive constant. We set v = (—1)7®¢&,, by Lemma and a simple
calculation gives

Vilg1? = elgal®) = = pjn((=1)7@ (ex, - eo - ¢1, 1) — (—1)7® (ex - € - da, $2))

= — (p(ej, (=1)7D &g, ) d1]* — plej, (=1)7@ &4, ) 62]%)

= —pp(|o1]? = ¢lgl?).
Then |¢1|? = ¢|¢2|? everywhere by an ODE argument. The norms of both ¢; and
¢2 approaches to 1, so ¢ = 1. It remains to show ¢; and ¢o are orthogonal. If
o@1) =02 + 1, then

Vi{¢1,¢2) =0

by (5.2). Combining with that (¢1,¢d2) approaches zero as || — oo leads to

(#1,02) = 0. If 0(1) = 0(2), we can assume that v - eg - ¢; = ¢;. It is easy to check
%(cf)l + ¢2) and \%(qﬁl — ¢9) satisfy the assumptions of the proposition, hence,

they have the same norm. Similarly, for %(qﬁl +v—1¢2) and %((;51 — vV —1¢9).
The polarization yields (¢1, ¢2) = 0. O

5.3. Foliation by flat capillary MOTS. In this section, we carry an argument
used by [BC96| for a single spinor component.

Proposition 5.9. Let ¢ be a spinor, and f and W be the function and the vector
field associated with it given in Lemma

(a) there exists a global foliation of M such that W is normal to each leaf;
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(b) each leaf ¥ is a capillary MOTS; in particular, the unit normal of ¥ is given
by v = (—1)7¢s and let h® = Vv be the second fundamental form of ¥ in M,
then h™ +px=0;

(c) The spinor ||~ is parallel with respect to the induced spinor connection of
3.

Proof. Around a point ¢ near infinity, let {e;} be an orthonormal frame such that
V..e; =0 at g. Let {'} be the dual frame and w be the dual 1-form of W. Here,
the components of tensors or forms are taken with respect to the frame {e;}. Then
w = W;e" and the calculation

dw(si, é‘j)

=ei(w(g;)) —gj(w(e))

=ei(W,e5) —e;(W, &)

=(ViW, ;) = (V; W, &)

= - (_1)0’(<fq(51)7 ) 8]> - <fq(5])7 61>)

:0,
shows that w is a closed 1-form. By the Frobenius theorem, there exists a foliation
of M such that W is normal to each leaf, say X.

Note that €4 = W/ f is a unit normal to X, let v = (—1)7¢,. We can assume
that €, = v and the indices 7, j < n. Then by (5.5),

hlzj = (V,v,e;)
= (=D)7(Vi(W/f),&))
= (=17 f VW = WV, f,e5)
= (-1)7f VW
= —Dij-
This shows that ¥ is a MOTS. The capillarity follows from (v,e,) = k proven

earlier in Lemma (Considering asymptotics, ¥ N IM # (.)
Recall that the hypersurface spinor connection on ¥ is given by

VP=V,+i(Viw) v-.
Hence,
Vie
=Vip+3(Viv) v ¢
=~ 5(=Dpiej 20 6 =3 ) pijej v ¢
j<n
== 3(=1)7pisej €0 - 6+ 5(=1)7 > _pijej co- ¢
j<n

= %(_l)gpin57z “€0 ¢ = _%pln(ba

where we have used (—1)°v-ep-¢ = ¢ and V,v = — Zj pije;. Therefore,
VE@loITY) = 1817 VEe — 5lél 0((VE e, 0) + (6, V7)) = 0.

That is, |¢|~1¢ is a parallel spinor with respect to the induced spinor connection
of X. O
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Now we determine the equations satisfied by the boundary M, in particular,
we determine all the components of symmetric 2-tensor h?M + KP|oM -

Lemma 5.10. Let {e;} be an orthonormal frame defined near OM such that e, is
the unit outward normal of OM in M, and ey be such that e; = (—1)7F1T|€T |71
then the only nonzero components of the symmetric 2-tensor hOM +Kpjam 8 hOM -
KP11 = TPn1 and Ppi—o for i # 1,4 # n along OM.

Proof. Since Q¢ = (—1)7¢ along OM and V,¢ = 0, we see
Va(Q9) =0.
Expanding by using the definitions of @) and V, we see
0=Va(Q9)
=(Va + 3(—1)paje; - €0-)Q0
=(VaQ) ¢+ Q- Vad+ 3(—1)pajej €0 Q- ¢
=kVaen €0 ¢+ 7(=1)X'/=1V e, - ¢
+ 3(=1)pajlej €0 Q- —Q-ej-eq-P)
=rhageg - €0 ¢+ (1) hagV/~leg - ¢
+ 2(=1)paples e Q-0 —Q-e5-€o- d)
+ 5(=1)panlen-€0- Q- ¢ —Q-en-eo - P)
=rhages €0~ ¢+ T(=1)hapv—leg - ¢
— kpas(—1)%es -y - @
+ TPan(—1)7 X0~ 1eg - ¢.
We calculate 0 = (e, - Vo (Q¢), ¢), and obtain
0=7(=1)""v~1hap(es - ¢, e~ - d)
— KPas(—1)7(es - €n - & e - @)
+ TPan (1) =1{eo - ¢, 65 - @)
= —7(=1)*"V~Thag(ey - €5 ¢, )
— #PapT (=1 V=1{ey e ¢,9)
— TPan(~1)7XV=1(ey - € - 6, )
= —7(=1)"V~1hag(ey - €5 ¢,9)
— kPapT(—1)V=1{ey - e5 - 6, )
_ 72pan(_1)U+X1+U+X1 \/fl<¢f1 ey reqen b, b)
Dividing the above by 7(—1)7ty/—1,
(hag + Kpag)(ey - € ¢, ) — TPan(=1) (V=1ey €0 - €n - ¢, ¢) = 0.
Taking the real part,
~(hay + KPay) = TPan(=1)7(V=Tey - €0 - €n - 6, 0) = 0.
By symmetry,
~(hay + BPay) = TPan (1) (V=1ea - €0 - en - ¢, ¢) = 0.
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Taking v = 1 and applying (5.7) gives
_(hal + "ipal) + TPan = 0.
Taking v # 1 and applying (5.7) leads to
hany + Epary = 0 for v # 1.
Now since the equality of (1.2) is achieved, we see po, = 0 for o # 1. O

Lemma 5.11. Let ¥ be a leaf of the foliation given in Proposition[5.9, then 0% is
totally geodesic in 3.

Proof. Let v = (—1)?¢, then ¢ = 1 — (n, v)v is normal to A% in ¥. And the norm

of this vector is ~

(¢ = [n = (n,v)v? = [0 = (n,v)* =
which is a constant. Let 2 < 4,7 < n — 1, then the vector field e; and e; is parallel
to 0%. We verify the following

(Vi Ca 6J>
=(Vin— (n,v)Viv, €;)
zh%M - <77,1/>h1-2j
:th + Kpi; =0
by Proposition and Lemma Hence, 0¥ is totally geodesic in X. (]

Now we can actually have the following structure for the original initial data set
(M, g,p).

Theorem 5.12. There exists a globally defined function u such that u — —kx, —
Tx1 as |x — oo such that each level set ¥ is a flat capillary MOTS. Moreover, let
{en} be an orthonormal frame such that €, = v along ¥. We set in this theorem
that the components of geometric quantities are take with respect to the frame {e;}.
Define
Rijri = Rijri + DjkDit — PikPji-
Then
ViPjn — Vjpin =0,
Rijin = Vipji — V;pir for all i, j,k,1
Rijkl =0 forali<n, j<n,k, I

Proof. Let m be the dimension of the spinor bundle of S™!, see Section (in fact,
m = 2["/2]+1). Let {¢o:}1<i<m be an orthonormal basis of the constant spinors
such that
182 81:0 : amn ¢0 T ( )01 1+1¢0 73

where 01, = —1if 1 <i<m/2and o1; =0 if m/2 <i < m. We can obtain a set
of spacetime spinors {¢Z}1<l<m such that each ¢; is asymptotic to ¢¢;. Each ¢;
defines a foliation, say F; of M, by Lemma [5.7] and Proposition [5.8] the foliations
{Fi} are the same one. By Proposition u {¢:|¢i| =1} forms an orthonormal basis
of parallel spinors along each leaf 3. Hence, ¥ must be flat. Moreover, the boundary
0. is totally geodesic. Hence each leaf 3 is flat R’_ﬁ_l and M is topologically R’ .

By the Poincaré lemma, (—1)°W = Vu for some global function « where o and
W are associated with any choice of spinor from the set {¢;}.
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With suitable scaling, we see u — —kx, — 721 as |z| — oo from (5.8). For any
m-tuple s = (s1,...,$m) of spinors and any Euclidean vector X, we define a linear
transformation wy by

m

(wxs)i = > _(wx)ijs; = (X - 525 - P05, G0,i)s;-

j=1
Let Ny be the limit of v. We set s = (¢1, ..., dm), then by (5.6) and Lemma
WNyS =V -€g-S.
Moreover,
viS + %pijej €0 WNyS = 0,

since the components of s solves (5.2). The formal notation of wy, and Proposition
then allows us to re-use the calculation in [CW24, Section 3.6] which finishes
the proof. [

Remark 5.13. It follows from (5.5)) that Au + try p|Vu| = 0. The function v is
called a spacetime harmonic function introduced by [HKK22].

5.4. Construction of pp-wave spacetime metric. We use the spacetime har-
monic function v in Theorem and find canonical coordinates {y®}1<agn—1 On
its level sets.

We set y™ = u and we calculate the metric in terms of {y’}1<i<n. For y!, we
solve

(5.9) Asy' =0in %, y' = £y" along 9%, y' = 12" — kz' + o(1).
For * with 2 < i < n — 1, we solve

Asy'=0in %, g—gi =0 along 0%, y' = ' + o(1).
Note that by (5.9)), Oiyl is orthogonal to 9% in X.

Remark 5.14. We are less concerned with the decay rates of {y'} and later such
quantities as N, Y, £ and F, which were well studied in [HZ24]. The reason, in
our case, is that it is enough to take the boundary version of various estimates (see
[ABAL16, Section 3]) into consideration as well.

We have another set of asymptotically flat coordinates {z'} on M related to {y’}
by
(5.10) 2=yt —kyl, i =ylif2<i<n—1, 2" = —ry" + 1yt
See Figure [5.1]

Note that {2z'} models on the original asymptotically flat coordinates {z'}, and
they are asymptotic to each other. We set N = |[Vu|™! and Y, = ¢ (8%”’ ay%).
The metric g is now given by

n—1
(5.11) g=(N?+[Y])(dy")* + 2Vady"dy® + > _ (dy®)*.
a=1
The inverse metric is then
N—2 —N_2YT
1 _
(512) g - _N—QY Infl +N_2YYT .
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FIGURE 5.1. Relations between {y‘} and {z'}.

The findings of Hirsch-Zhang [HZ24, Lemmas 5.3-5.5] regarding (5.11]) are col-
lected below.

Lemma 5.15. Let X be any y™-level set, there exists some function £ such that
Y, = VZ0. And (M,g) arises as the {t = —{} spacelike slice of the pp-wave
spacetime metric (see Deﬁnition@)

(5.13) §=—2dtdy" + F(y)(dy™)* + > (dy*)*,

«
where y = (y*,...,y") and y* > £y (since 2" > 0), and F = N? + |[VZ(|> — 20,
is superharmonic on .

Remark 5.16. The Killing the development is given by g = 2d7du+g on M xR =
R:L_H and (5.13)) is obtained by setting 7 = —t — ¢. And F' is superharmonic due to

(5.14) p=—iN2AgF
and the dominant energy condition (1.1). We also have the helpful relation
(5.15) Pap =N Mog, p=—|Vy"| 7'V = —NV?y".

Now we derive an equation satisfied by Y7 and N on the boundary. We calculate
all the components of the second fundamental form h%M + kpjom of OM in M. To
this end, we need the Christoffel symbols of the metric, which is recorded in Lemma

ATl

Lemma 5.17. Let £ and N be given as above, then
(5.16) [Vz"| =1 and k + 7Y] = KN,
along OM .

Proof. The vector field Oiyl is normal to &% in ¥ by construction, and Vz"|V2"|~!
is the unit inward normal of M in M. Since ¥ and 9M form a contact angle 6 by

Proposition [5.9} then
lé) V2" \ _
<ay17 |Vzn|> _7—)

which gives |Vz"| = 1. So using (5.12]),
1=|V2")? = | - kVy" +7Vy'?
:RQan _ 2%7’9”1 4 7_2g11

=k?N"2 4 267N 2Y] + 72(1 + N72YP).
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By solving the above, 7Y; = —k + kN. Considering the asymptotics, it is only
possible that k + 7Y; = kNN. ([

haM

We now express the boundary curvatures in terms of the metric.

Lemma 5.18. We have
(haM + /<;p)(ai7 i) haﬂ + Kpag =0,
(B + kp) (%, 52r) = —37°Fu,
along OM for a# 1, B # 1.
Proof. The unit outward normal of M in M is given by —Vz", so

=—V.Vge"
=kVaVau+7VoVy

=— KN 2yp + TF(llﬂ

=— kN "2lys — TN 21 l,p,

for a # 1, B # 1. Since pog = N g, hg% + kpag = N 2ap(kN — k — Tl1)
which vanishes by (5.16)).
First, we have that

(5.17) hOM 4 kp = (k: — kN)VH" — V2!
restricted to TOM ® TOM using and ([5.16] - Hence,
hdM(azl ) ay )+ “p(azl’ 63 )
=(kN — k) (V2y") (T ay —I-H(,)yl, = O +1(V3y 1)(7% + /4;8%1, %)
=(kN — k)(1T",, + k[') 4+ 7(7TL, + xT1,,)
=(kN — g)(rI'], + &['T,) — 7 (7T, + kTT,),

where we have used Lemma [A.1] in the last line. Hence

haM(aglv By )+ “p(awla 83 )= (TFZa + ”F?a)(_Tgl + kN — k)
which again vanishes due to It remains to show the last item, and for that
we need (VQy")(a‘zl, 7o) and (V2 1)(821’ 5o1). We now calculate,

(V2y ">(azu 7or)
=(V2y™)(r W + K%,T% + fiaiyl)
= — (7217, + 2k7T}, + K°T7),
and
(V') (520, 521)
:(szl)(rayn + Haiyl, T&% + /iaiyl)
=— (7T}, + 2k7T], + K°T1)
=700, + LF) + 267017, + K20
In the above, we have used Lemma Hence,
(WM +kp) (52, 520 ) = (kN —k—70) (72T, + 2670, + 7T ) — $7°Fy = =173 1),
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by (5.17) and then (5.16]). O

To complement Lemma we also calculate p(e,, ) restricted to OM. Recall
that e, = —=V2z".

Lemma 5.19. We have

p(aya ) VZ ) =
(5.18) p(52r, —V2") = —%N_lTQFl.
Proof. We check p(aaa,Vz ) = 0 first. Because of (5.15), we need to calculate
(V2u) (5, 5%) and

(V2u) (3% 525) = —Tag = =N "2lag.

And
(V2u) (55, 502) = —Tha = =3 N 2(N? + V7)o
So
VaVyuu
="V Vit = ¢""Vo Vou + g™V Vu
= — SN N+ [VEP) 0 + (=N 2g) (=N "2lap)
= - N,N73
and
VaVyyiu
=¢'"VoV,u + ¢"#V,Vsu
=(=N720) (=5 NH(N? + [VZ?)a) + (6" + N7201Lp) (=N Lap).
Then

VaVvZnu
:vavanymrTVle
=N (kNaN 2+ 7Nols N2 = 7N y,)
=—N'kN'+764N )0 =0

by (5.16]). The calculation of the right hand side of ([5.18)) is the most involved in
this proof. Indeed,

N7p(g2r, —V2")

=N?7(V? u)(a -, V2"

— N%7(VZu )(Tayn + Ha%u —kVy" +1Vy')

= — N27(=r7I7,g" — K2TT. g™ + 7217, g% + k77, g')

= — N27(=k7I? g"" — K2TT g™ 4+ 7°T7" g'" + k1T, g™™)
— N?7(=r7Tp, 9" = K T1,g" + 72T 9" + k7TT,0™).
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Using the two consequences of —kg"+ 719" = —k N~ and —kg"* + 79! =
T0o + KN,
NTP(%, —-Vz")
=N?7(kTN~'T?, + KEN7'T'],)
— N27[rT? (010 + KN ) + KDL (7810 + KN,
=Nkr (I}, + &I'},)
— N7 (72T, + ke N "M, I+ k7T + k2N LT
=Nkr?(T7, — £,T7,) + N&27T7,
— N273T0 — N267TY — NK27L,T7,
=kT2 N, + 3° TN (N + V)2
— 3T (N? + [VPU%) 1 — k7% — N7 6Pl b
=— %T3F1.
In the last line, we have used
0= %(H‘f —741) = kTN, — 72011 + K2 Ny — 7241,
which is a consequence of and that % is tangential to OM. a
Remark 5.20. The vector field

n—1

n—1
o= g = 3 (ol o) o = o + D Thaghs
=2 a—2
is normal to 0¥ in OM and it has length
le1]?

= (o o) — (VP - )

=72 Gnn + 267 g1n + K2g11 — T2 (V7L — £3)

=72 (N? + |VZUP) + 26701 + 52 = T2 (V77 - £)

=72N? 4+ (7203 4+ 2K7l1 + K2)

=m’N? + (141 + k)*> = 7’ N? + i?N? = N?,
where in the last line, we used . Hence |é;] = N. Let e; = N~1é;, we see

hOM (e, e1) + kpler, er) = Tp(eq, en),
where e,, = —V2z" from
(ROM + kp) (52, o2r) = NTp(g%r, —V2"),

which checks out with Lemma F.100

We now provide a proof of Theorem which is an expanded version of The-
orem by summarizing the results proven so far.

Theorem 5.21. Let (M, g,p) be a spin asymptotically flat initial data set, which
satisfies the dominant energy condition (1.1), the tilted dominant energy condition
(1.2) and has zero mass, i.e.

E + cosOP, = sinf|P|,
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then (M, g) admits a set of coordinates {y'} such that
(a) the metric is of the form

9= (N?+|VZ(P)(dy")? + 2Ledy®dy™ + Y (dy*)?

and satisfies
cosf + sin @l = cosON along OM;

(b) the y™-level sets are flat capillary MOTS;
(c) (M,g,p) isometrically embeds into

(Mng—2dtdy +F(y —i—Zdy )

with t = —¢ over the {t = 0}-slice in (M xR, §) with the the second fundamental
form given by p = —|Vy"|"1V2y"; moreover, F(y) = N? + |VZ{]? — ‘9—& is
superharmonic on any y"-level set and — a 9E > 0 along OM ;

(d) moreover if E + cosOP, = 0, then (M, g, p) lies in the half Minkowski space,
more specifically,

<M><Rg_—2dtdy + (dy™) +Zdy )
where the boundary O(M x R) is given by the relation y' = Zyn.
hOM 4 kploar vanishes and p(n,-)T vanishes along OM.

Proof. First, (a]) follows by Theorem and (]ED is already in Proposition
The item follows from Lemma and u > O follows from Lemma

and the tilted boundary dominant energy condition .

It remains to show @i we observe that |15| = O7 so we can make free choices
of 81 in Subsection |5.1] Following once again all the proof, we see from Theorem
- that Rijp = 0 for all i, j, k, 1 and from ) that AxF = 0; it follows
from Lemma [5.18] and the free choices of a that ‘9; = 0 along 0%. Since F
asymptotics to 1, by the Liouville theorem, F = 1. And this finishes the proof. [

Moreover,

APPENDIX A. CALCULATION OF CHRISTOFFEL SYMBOLS
In this appendix, we record the Christoffel symbols of the metric (5.11)) where
Y, = Vi
Lemma A.1. Let g = (N? + |[VZ{]?)du? + 20,dudy® + |dy|>. The Christoffel
symbols of g satisfies the following relations:
Ton = g NN+ [V2?) 0, T3, = —€T
TBLOt = N_QEBO“
hn = Nu/N+ L1705,
[0y =—N"llas = —L, T,
F%n = _garzn - %Faa

no?

where F = N? + |V={|? — 20,,.
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Proof. The proof is just tedious calculation. First, we calculate I'},,,
Iha
:%gnn(gan,n + Inn,a — gan,n) + %gnﬁ(gaﬁ,n + Inp,o — gna,ﬁ)

:%gnngnn,oc = %NﬁQ(N2 =+ |Y|2),a.

Next I’zﬁ,
Flﬂ
:%gvn(gan,ﬁ + 9Ban — gaﬁ,n) + %g’yu(gau,ﬁ + 9Bu,0 — gaﬁ,,u)
=39""(gan,p + 9gan) = =Ny lag.
And PR
n
ap
=59""(an,p + 9pn.a = gapn) + 39" (Gar,6 + 96v.a — Jaby)

_ 1 nn

=39 (gom,ﬁ + g,@‘n,a) = NﬁZﬂalg.

And I'2 and ', are related to I'?,, since,

Pga = %gﬁn(gnn,a + 9an,n — gna,n) + %gﬁv(ga%n + Invy,a — gna;y)

=20 " gnna = — SN 2(N? + |V¥)?) o = —LsT7.

and
Ion
=59""Gnnn + 59" (29na,n — Gnn,a)
=INT2(N? + |VZP) 1 — 2N 20 (260 — (N? + [VZL]?) o)
=N, /N + AN"20,(N? +|VZ?) o
=N, /N + £,T7,.
Finally, we verify the relation I'Y,, = —(,I'", — 1 F, in the following:
re,
:%gangn"vn + %gav(QQn%n — Gnn,y)
== s N2 Ua(N? + [VEU?) 0 + 5 (Bay + N72laly) (2l — (N2 + [VZE?) )
= — INTUo(N? + [VZUP) g+ Lan — 3(N? + [VZ?) o
+ AN T2l by — ANT2U 0 (NP + | VEL?)
=—0LI, — %F,a.
This finishes the proof. (I
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